Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Transparent thin film heaters based on silver nanowire networks
Download
index.pdf
Date
2015
Author
Ergün, Orçun
Metadata
Show full item record
Item Usage Stats
252
views
87
downloads
Cite This
Transparent thin film heaters are used in various de-fogging and de-icing applications because of their ability to convert electrical energy to thermal energy while allowing to transmit solar light through a surface. Indium tin oxide (ITO) is the conventional transparent conducting material used in transparent thin film heaters. However, due to scarcity of indium and its increasing prices worldwide, coupled with the inflexibility of ITO, alternative materials are being investigated. Silver nanowire networks have a great potential to be used as transparent thermal thin film heaters because bulk silver has the highest electrical conductivity among other metals, which result in low sheet resistances. Moreover, silver nanowire thin film networks demonstrate high optical transparency with low sheet resistance. Diameter of silver nanowires are in the order of few tens of nanometers, which confines electrons to travel through one dimension that result in high thermal performance due to Joule heating. In addition, silver nanowire based transparent thin film heaters can be made flexible on polymeric substrates. In this thesis, silver nanowire based transparent thin film heaters were fabricated on quartz, soda lime silicate glass, polyethylene terephthalate (PET) substrates. Nanowire networks were deposited through simple spray coating method. Thermal performance as well as optoelectronic characteristics of the networks were determined. It is concluded that silver nanowire based transparent thin film heaters demonstrate high thermal performance coupled with high optical transmittance.
Subject Keywords
Thin films.
,
Nanowires.
,
Spraying.
,
Coatings.
URI
http://etd.lib.metu.edu.tr/upload/12619106/index.pdf
https://hdl.handle.net/11511/24980
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Copper nanowire network based transparent thin film heaters
Tigan, Doğancan; Ünalan, Hüsnü Emrah; İmer, Muhsine Bilge; Department of Metallurgical and Materials Engineering (2018)
Metallic nanowire random networks are highly promising as transparent thin film heaters (TTFHs) due to their significant optoelectronic performance and thermal conductivity. Typically silver nanowires (Ag NWs) are utilized as TTFHs but in recent years, copper nanowires (Cu NWs) started to replace them in many applications as an economic alternative. The electrical conductivity of Cu is almost equal to that of Ag and it is much cheaper than Ag at least in bulk form. However, stability of Cu NWs is a lot poor...
Thin Wideband Infrared Metamaterial Absorber with Coplanar Metallic Patches of Different Sizes
Ustun, K.; Sayan, Gönül (2016-01-01)
Infrared absorber concept is a vibrant research topic because of the importance of real world applications such as infrared detectors, thermal coolers and energy harvesters. In this paper, we propose and numerically analyze thin metamaterial structures designed to operate in Long Wave Infrared Region, one of the regions that atmosphere shows transparent behavior. It is demonstrated that one of the proposed structures attains absorptance values higher than 80 percent in the wavelength region from 8.14 ium to...
Nickel assisted chemical etching for multi-crystalline Si solar cell texturing: a low cost single step alternative to existing methods
Takaloo, Ashkan Vakilipour; ES, FIRAT; BAYTEMİR, Gulsen; Turan, Raşit (2018-07-01)
The texturing of silicon surfaces is a well-known method of reducing the reflection from the surface of crystalline Si solar cell devices. With the utilization of diamond wires in recent advances in wafer slicing technology, surface texturing for the multi-crystalline Si wafers by the traditional acid-based texturing technique has become difficult. Metal-Assisted Etching (MAE) has been shown to be a promising and low-cost alternative to the traditional acid-based isotropic texturing. This paper reports, for...
Investigation Of The Device Properties Of Cztse Thin Films For Solar Cells
Bayraklı, Özge; Güllü, Hasan Hüseyin; Parlak, Mehmet (2016-10-02)
Thin Film Solar Cell has received a considerable attention in the photovoltaic industry. While the efficiency of thin film amorphous silicon is about %14, the efficiency of Cu(In,Ga)Se2 (CIGS) thin film based solar cells ,is very popular in the recent year, reached the value of %20. But CIGS based solar cells have some constraints such as its extensive and large scale production in terms of availability of its constituent elements. On the other hand, Kesterit based solar cells such as Cu2ZnSnSe4 (CZTSe) hav...
Tunable Graphene Integrated Perfect Metamaterial Absorber for Energy Harvesting and Visible Light Communication
Sabah, Cumali (2018-02-09)
Tunable graphene integrated metamaterial absorber is proposed for energy harvesting and visible light communication. The structure provides unity absorption in the visible spectrum in which it can be used perfect absorber for energy harvesting. In addition, it also provides tunability because of the graphene conductivity to be used as photoconductive or thermal switch for visible light communication.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ergün, “Transparent thin film heaters based on silver nanowire networks,” M.S. - Master of Science, Middle East Technical University, 2015.