Copper nanowire network based transparent thin film heaters

Tigan, Doğancan
Metallic nanowire random networks are highly promising as transparent thin film heaters (TTFHs) due to their significant optoelectronic performance and thermal conductivity. Typically silver nanowires (Ag NWs) are utilized as TTFHs but in recent years, copper nanowires (Cu NWs) started to replace them in many applications as an economic alternative. The electrical conductivity of Cu is almost equal to that of Ag and it is much cheaper than Ag at least in bulk form. However, stability of Cu NWs is a lot poor compared to that of Ag NWs due to ease of oxidation upon air exposure. The problem gets even worse at elevated temperatures considering TTFH applications. Therefore, a protection layer to be deposited onto Cu NW networks is necessary for their large scale utilization in TTFHs. In this study, aluminum oxide (Al2O3) and zinc oxide (ZnO) shells were deposited onto Cu NW networks by atomic layer deposition (ALD) method. Cu NW networks with a sheet resistance of 10 Ω/sq failed only after attaining a temperature of 100 °C due to oxidation. On the other hand, deposition of only 5 nm Al2O3 and ZnO shell layers onto Cu NW networks (10 Ω/sq sheet resistance at 80.8% transmittance and 15 Ω/sq sheet resistance at 84.4% transmittance) increased the maximum attainable temperatures to 153 °C and 139 °C, respectively. This was a clear indication of oxidation protection by the deposition of the shell layer onto Cu NW networks. Moreover, in order to further increase the protection level, the effect of oxide shell thickness was investigated in sacrifice of network transmittance. Attained maximum temperatures were increased up to 309 °C and 237 °C for 50 nm thick Al2O3 and ZnO shell layers on Cu NW networks, respectively. Moreover, prominent heating rates of 14 °C/s and 12 °C/s were obtained from these core shell networks with Al2O3 and ZnO shells, respectively. Finally, an extensive parametric study on NW density, type and thickness of metal oxide shells in comparison to optoelectronic properties of networks and their thermal response is reported. The performance of the networks reported herein lie among the highest achieved for Cu NW TTFHs. In order to demonstrate the feasibility of these networks as TTFHs in a real life application, they were utilized as defrosters.


Transparent thin film heaters based on silver nanowire networks
Ergün, Orçun; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2015)
Transparent thin film heaters are used in various de-fogging and de-icing applications because of their ability to convert electrical energy to thermal energy while allowing to transmit solar light through a surface. Indium tin oxide (ITO) is the conventional transparent conducting material used in transparent thin film heaters. However, due to scarcity of indium and its increasing prices worldwide, coupled with the inflexibility of ITO, alternative materials are being investigated. Silver nanowire networks...
Investigation of material properties of magnetron sputtered CuAg-In-Se thin films
Güllü, Hasan Hüseyin; Parlak, Mehmet (null; 2016-09-23)
Thin films of copper based chalcopyrite absorber materials are attracting the attention of many researchers because of their favorable optoelectronic properties and good stability makes them suitable for photovoltaic and optoelectronic device applications. These compounds are particularly suitable for making p-n hetero-junctions with the II-VI compounds. Therefore, the utilization of I-III-VI2 group of chalcopyrite semiconductors has been reported in the literature for application in thin film solar cells. ...
Development of indium tin oxide (ITO) nanoparticle incorporated transparent conductive oxide thin films
Yavaş, Hakan; Durucan, Caner; Department of Metallurgical and Materials Engineering (2012)
Indium tin oxide (ITO) thin films have been used as transparent electrodes in many technological applications such as display panels, solar cells, touch screens and electrochromic devices. Commercial grade ITO thin films are usually deposited by sputtering. Solution-based coating methods, such as sol-gel however, can be simple and economic alternative method for obtaining oxide films and also ITO. In this thesis, “ITO sols” and “ITO nanoparticle-incorporated hybrid ITO coating sols” were prepared using indi...
Zinc oxide nanowire networks for macroelectronic devices
Ünalan, Hüsnü Emrah; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J. (AIP Publishing, 2009-04-20)
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These r...
Atomic-layer-deposited zinc oxide as tunable uncooled infrared microbolometer material
Battal, Enes; Bolat, Sami; TANRIKULU, MAHMUD YUSUF; OKYAY, Ali Kemal; Akın, Tayfun (2014-11-01)
ZnO is an attractive material for both electrical and optical applications due to its wide bandgap of 3.37eV and tunable electrical properties. Here, we investigate the application potential of atomic-layer-deposited ZnO in uncooled microbolometers. The temperature coefficient of resistance is observed to be as high as -10.4%K-1 near room temperature with the ZnO thin film grown at 120 degrees C. Spectral noise characteristics of thin films grown at various temperatures are also investigated and show that t...
Citation Formats
D. Tigan, “Copper nanowire network based transparent thin film heaters,” M.S. - Master of Science, Middle East Technical University, 2018.