Object tracking with range gated camera system

Yağcıoğlu, Mustafa
Imaging systems can be categorized as active or passive. Passive systems act only as a receiver and do not send any energy to their environment. Frequently used night vision systems such as thermal imagers and image intensifier systems are examples of passive systems. Active imaging systems on the other hand, send energy to their environment and detect the reflected energy from the objects. While passive systems require some ambient light or object radiation, active imaging systems can work without any external light source. Range-gated imaging systems are active systems that use a high-power pulsed-light source and control the opening and closing times of the camera shutter in conjunction with the light source. By calculating the arrival time of the reflected light from the object, the camera shutter is opened for a short time period to form an image using the returned light. This allows generating high contrast images of the objects in difficult lighting conditions. To track an object with a range-gated system, beside the horizontal and vertical position of the object, the distance of the object should also be tracked. The distance information is used to arrange shutter timing of the camera. In this thesis, a range-gated camera system test bed was constructed and a robust object tracking algorithm integrated with this system was developed. The distance of the object is calculated by the proposed algorithm with various image comparison methods and the performances of comparison methods are compared.


KIRAGI, H; Ersak, Aydın (1994-04-14)
In this paper an object recognition and localization system based on ultrasonic range imaging to be used in optically opaque environments is introduced. The system is especially designed for robotics applications. The ultrasonic image is acquired by scanning ultrasonic transducers in two dimensions above the area where objects are located. The features that are used for recognition and localization processes are extracted from the outermost boundaries of the objects present in the input scene. Experimental ...
Detecting and tracking moving objects with an active camera in real time
Karakaş, Samet; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2011)
Moving object detection techniques can be divided into two categories based on the type of the camera which is either static or active. Methods of static cameras can detect moving objects according to the variable regions on the video frame. However, the same method is not suitable for active cameras. The task of moving object detection for active cameras generally needs more complex algorithms and unique solutions. The aim of this thesis work is real time detection and tracking of moving objects with an ac...
Image Reconstruction and Optimization Using a Terahertz Scanned Imaging System
Yildirim, Ihsan Ozan; ÖZKAN, VEDAT ALİ; Idikut, Firat; Takan, Taylan; ŞAHİN, ASAF BEHZAT; Altan, Hakan (2014-09-23)
Due to the limited number of array detection architectures in the millimeter wave to terahertz region of the electromagnetic spectrum, imaging schemes with scan architectures are typically employed. In these con fi gurations the interplay between the frequencies used to illuminate the scene and the optics used play an important role in the quality of the formed image. Using a multiplied Schottky-diode based terahertz transceiver operating at 340 GHz, in a stand-o ff detection scheme; the e ff ect of image q...
Photoluminescence specroscopy of CdS and GaSe
Seyhan, Ayşe; Turan, Raşit; Department of Physics (2003)
With the use of photoluminescence (PL) spectroscopy one can able to get a great deal of information about electronic structure and optical processes in semiconductors by the aid of optical characterization. Among various compound semiconductors, Cadmium Sulfide (CdS) and Gallium Selenide (GaSe) are interesting materials for their PL emissions. Particularly, due to its strong anisotropy, investigation of GaSe necessitates new experimental approaches to the PL technique. We have designed, fabricated and used ...
Measurement of AC magnetic field distribution using magnetic resonance imaging
Ider, YZ; Muftuler, LT (1997-10-01)
Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system, A pulse sequence that is originally design...
Citation Formats
M. Yağcıoğlu, “Object tracking with range gated camera system,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.