Aero-structural design and analysis of a joined-wing kit

Alanbay, Berkan
In this study, a multi-objective aero-structural multidisciplinary design optimization (MDO) of a joined-wing kit which is installed on a transonic free fall munition is performed. The main purpose of the joined-wing kit is to enable the munitions to extend their range and gain standoff attack capability. In order to fulfill these aims joined-wing kit configurations are generally investigated through various analyses. Each joined-wing configurations are determined through two geometric key parameters namely; the aft wing sweep angle and the location of the joint. In the first part of the thesis, dynamic characteristics of the joined-wing configurations are investigated through series of finite element modelling and analyses. Thereafter, experimental validations of these finite element models are performed by classical modal analyses techniques comprising both impact hammer and shaker tests. The second part of the thesis focuses on the high-fidelity multi-point aero-structural optimizations of the joined-wing configurations. In addition to the geometric design parameters, the effects of two aerodynamic design variables; namely speed and the angle of attack of the munition are also explored. The objectives of the optimization can be listed as maximizing lift-to-drag ratio, minimizing weight of the joined-wing vi kit and increasing wing stiffness. For these purposes, loosely coupled MDO analyses are elucidated with a hybrid genetic algorithm and response surface methodology (RSM). In consideration of the 3D aerodynamic analyses, RANS (Reynold Averaged Navier Stokes) simulations with Spalart-Allmaras model are used for turbulence closure. Then, the structural analyses are performed under various the aerodynamic loads. In order to construct accurate response surfaces, both aerodynamic and structural analyses are repeated for required number of experimental design points which are chosen through design of experiments. Finally, candidate design points for the best design are extracted from the response surface models by using multi-objective genetic algorithms.


Aeroservoelastic Modelling and Analysis of a Missile Control Surface with a Nonlinear Electromechanical Actuator
Mehmet Ozan, Nalcı; Kayran, Altan (null; 2014-06-16)
In this study, aeroservoelastic modeling and analysis of a missile control surface which is operated and controlled by a power limited, nonlinear electromechanical actuator is performed. Linear models of the control fin structure and aerodynamics together with the nonlinear servo-actuation system are built and integrated. The resulting aeroservoelastic system is analyzed both in time and frequency domain. Structural model of the control fin is based on the finite element model of the fin. Aerodynamic model ...
Arpacıoğlu, Bertan; Kayran, Altan (2019-11-11)
This work presents structural optimization studies of aluminum and composite material horizontal tail plane of a helicopter by using MSC. NASTRAN SOL200 optimization capabilities. Structural design process starts from conceptual design phase, and structural layout design is performed by using CATIA. In the preliminary design phase, study focuses on the minimum weight optimization with multiple design variables and similar constraints for both materials. Aerodynamic load calculation is performed using ANSYS ...
Shape optimization of wheeled excavator lower chassis
Özbayramoğlu, Erkal; Söylemez, Eres; Department of Mechanical Engineering (2008)
The aim of this study is to perform the shape optimization of the lower chassis of the wheeled excavator. A computer program is designed to generate parametric Finite Element Analysis (FEA) of the structure by using the commercial program, MSC. Marc-Mentat. The model parameters are generated in the Microsoft Excel platform and the analysis data is collected by the Python based computer codes. The previously developed software Smart Designer [5], which performs the shape optimization of an excavator boom by ...
Structural optimization of composite helicopter rotor blades
Işık, Alperen Ayberk; Kayran, Altan; Department of Aerospace Engineering (2018)
Structural optimization of a helicopter rotor blade with uniform aerodynamic surface and twist at the functional region is performed for weight minimization subject to various constraints relevant to helicopter rotor blades. The genetic algorithm based optimization is performed only for the functional region of the blade. Design variables are taken as the number of unidirectional S-glass layers in the spar cap, position of the spar web with respect to the leading edge, nose mass diameter and position of the...
Structural optimization of a triner aircraft wing by using genetic algorithm
Çakır, Mustafa Kağan; Söylemez, Eres; Department of Mechanical Engineering (2008)
In this study, a design procedure incorporating a genetic algorithm (GA) is developed for optimization of the wing structure of a two seated trainer aircraft with single turboprop engine. The objective function considered is the total weight of the structure. The objective function is minimized subjected to certain strength requirements. In order to evaluate the design constraints and model the wing structure, finite element analysis is performed by using a conventional finite element solver (i.e. MSC/NASTR...
Citation Formats
B. Alanbay, “Aero-structural design and analysis of a joined-wing kit,” M.S. - Master of Science, Middle East Technical University, 2015.