Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and manufacturing of a solar powered unmanned air vehicle
Download
index.pdf
Date
2015
Author
Özcan, Servet Güçlü
Metadata
Show full item record
Item Usage Stats
641
views
276
downloads
Cite This
The aim of this thesis is to describe the conceptual design, performance analysis including solar energy collection and manufacturing process of a solar powered unmanned aerial vehicle (UAV) and validate the design through ground and flight tests. Through a literature survey of solar powered aircraft, main design requirements are chosen. The solar powered UAV designed for this study is a small scale aircraft and intended to be used simply and frequently by end-users. Therefore it is designed as a flying wing, to lower the cost of the manufacturing by simplifying the process. The manufacturing process is evaluated for further simplification and cost-effectiveness.\\ For ease of production, the flying wing is cut out from EPP/EPS foam blocks by hot wire, as two wings and one blended center piece (fuselage). The reinforcing structures are embedded in these foam-cut parts and two transparent winglets are assembled to the wing tips. At this step, the flying wing made its maiden flight without the solar panels to verify the design. After the maiden flight, solar panels are embedded on to the wings and ground test is conducted to verify the estimations on the solar energy collection by these panels. Lastly, the solar flying wing is flown a second time to observe its performance including the solar panels.
Subject Keywords
Solar energy.
,
Drone aircraft.
,
Renewable energy sources.
,
Airplanes
URI
http://etd.lib.metu.edu.tr/upload/12619627/index.pdf
https://hdl.handle.net/11511/25337
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Design and manufacturing of a high speed, jet powered target drone
Özyetiş, Ender; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which a...
Conceptual design of a hybrid (turbofan/solar) powered HALE UAV
Mermer, Erdinç; Özgen, Serkan; Department of Aerospace Engineering (2016)
The aim of the thesis is to design a HALE UAV using both turbofan engine and solar energy in order to obtain 24 hours endurance with 550 lb payload capacity and 30000 ft service ceiling. During daytime, required power is obtained from solar panels. However, excess solar energy is used for charging the lithium-ion battery. It is assumed that turbofan engine is used only for climbing to the required altitude. During loiter, only solar energy and battery power are used. The design methodology consists of two m...
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
Design and Manufacturing of a High Speed Jet Powered UAV
Ozyetis, Ender; Alemdaroglu, Nafiz (2014-05-30)
This paper presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which are fr...
Design of a high speed decoy UAV
Baykara, Umut; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2016)
This study consists of design, CFD aerodynamic analysis and optimized selection of a high speed decoy UAV. The mission requirements for the high speed decoy are based upon the previous experiences in literature. The requirements are specified as: Maximum altitude of 15000 ft, maximum speed of 450 kts and an endurance of at least 1 hour. The decoy UAV is launched from a pneumatic catapult and lands via a parachute system. It is a highly agile aircraft having a very high maneuverability capability. The aircra...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. G. Özcan, “Design and manufacturing of a solar powered unmanned air vehicle,” M.S. - Master of Science, Middle East Technical University, 2015.