Design and manufacturing of a high speed, jet powered target drone

Download
2013
Özyetiş, Ender
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which are from aluminum and steel, engine holders, parachute release mechanism and etc. The purpose of the thesis is to design and build a unique aircraft to be used as a target drone or a multi mission aircraft. Initial study is conducted by developing a design tool which works in an input-output way. Input parameters are categorized as blended wing-body parameters, tail parameters, propulsion system parameters, mission profile parameters, landing gear and parachute parameters, air properties and sample structural weights. Performance calculations are conducted by introducing an iterative weight calculation method. The Optimization process is conducted around the initial design by using the initial design parameters as a starting point. Some of the design inputs are selected as variable design parameters to construct the design cases which are formed via the combination of these variables. After final design is decided, modeling of the external geometry and modeling and integration of the sub-systems are conducted. Production is conducted in a step by step process which starts with the manufacturing of the skin pieces and frames and continues with joining of the structural parts prior to surface fibering and integration. The propulsion unit of the aircraft is selected as a mini turbojet engine which is capable of giving a 230 N thrust at sea level. The weight of the engine 2.85 kg and has a fuel consumption of 600 grams/minute at full throttle. The engine is controlled by an electronic control unit which controls the fuel flow through the engine.

Suggestions

Design and manufacturing of a solar powered unmanned air vehicle
Özcan, Servet Güçlü; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2015)
The aim of this thesis is to describe the conceptual design, performance analysis including solar energy collection and manufacturing process of a solar powered unmanned aerial vehicle (UAV) and validate the design through ground and flight tests. Through a literature survey of solar powered aircraft, main design requirements are chosen. The solar powered UAV designed for this study is a small scale aircraft and intended to be used simply and frequently by end-users. Therefore it is designed as a flying win...
Design and Manufacturing of a High Speed Jet Powered UAV
Ozyetis, Ender; Alemdaroglu, Nafiz (2014-05-30)
This paper presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which are fr...
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
Modeling and controller design of a VTOL air vehicle
Önen, Anıl Sami; Tekinalp, Ozan; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2015)
This thesis focuses on modeling, controller design, production and flight test of a VTOL unmanned air vehicle. The air vehicle that is designed and manufactured for this study has three propellers. A nonlinear mathematical model of the aircraft is developed. For this both numerical codes as well as wind tunnel tests have been carried out. A simulation code is then written in MATLAB/Simulink environment that describes the physical properties of the system in detail. After trimming the air vehicle at appropri...
Design of a medium range tactical UAV and improvement of its performance by using winglets
Turanoğuz, Eren; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2014)
The study encompasses the design, performance analysis and aerodynamic improvement of the designed medium range tactical unmanned aerial vehicle. Main requirements are set as following; cruising altitute above 3500m, endurance of approximately 10-12 hours, range of 150 km and payload of 60 kg. The conventional design phase is based on the employment of historical equations and experiences. Nowadays, employement of well known equations and experiences during the desing process are not enough to reveal a comp...
Citation Formats
E. Özyetiş, “Design and manufacturing of a high speed, jet powered target drone,” M.S. - Master of Science, Middle East Technical University, 2013.