Simultaneous determination of bismuth and tellurium using tungsten coil atom trap with inductively coupled plasma mass spectrometry /

Bora, Selin
Atom traps such as slotted quartz tube, quartz plate and tungsten coil have been used in atomic spectrometry in order to preconcentrate analyte hydrides and then detection was done by atomic absorption or fluorescence spectrometry. In this study, tungsten coil atom trap was used for the first time with plasma spectrometry. A novel method, which is called Hydride Generation Tungsten Trap Inductively Coupled Plasma Mass Spectrometry (HG-W-Trap-ICPMS), was developed in the first part of this study. Then as a second part, multi-element determination was performed by the proposed method. This novel method was developed step by step and using only Bismuth at the beginning. HG and then W-coil as a trap was coupled to ICPMS. Flow injection system was used in both nebulization and HG parts. For HG, volatile analyte species were transported from a U-tube type gas-liquid separator (GLS) to plasma. HG system was connected directly to the inlet of torch without any spray chamber and nebulizer system. W-trap was located between the plasma torch inlet and the GLS outlet. 106 mL/min H2 was passed through the atom trap to protect W-coil from oxidation. Both presence of H2 and air in the system disturb the plasma seriously. In order to sustain the plasma stability 125 mL/min make-up Ar was introduced to the system through inlet of trap tube. Hydride species were collected on W-trap at an optimized temperature and then revolatilized by heating the coil to a higher temperature. Transient signal with a halfwidth less than 0.5 s was obtained. Effect of dwell time and smoothing were also studied in this study. Dwell time was set to 10 ms for all parts and smoothing was not applied. After HG-W-Trap-ICPMS method was developed for only Bi, multi-element study for simultaneous determination of Bi and Tellurium in their mixture was performed successfully. For comparison, studies were also done by Te alone. In addition, effect of three different coatings, which were iridium, platinum and rhodium, were evaluated for each element. Sensitivities using nebulization, HG and HG-W-Trap were compared for Bi and Te determinations by ICPMS. When slopes of calibration plots are considered, as compared to nebulization, HG-W-Trap signals were 1255 and 106 times more sensitive for 209Bi and 130Te, respectively. For 1.0 min collection period, LOD values were found to be 2.7 ng/L for Bi with Ir-coated W-coil and 6.0 ng/L for Te with Pt-coated W-coil. Trapping efficiencies of Bi and Te were calculated as 40% and 15%, respectively. In simultaneous determination of these two elements slopes of the calibration graphs were found very close to that of single mass study for each element. Pt-coated W-coil was used for Bi and Te mixture study. Accuracies of the methods were checked by using the “NIST 1643e Trace Elements in Water” and “NIST 1643f Trace Elements in Water” standard reference materials. Determination of three elements simultaneously by HG-W-Trap-ICPMS method was also feasible. Antimony and selenium were used separately as a third element besides Bi and Te. Three masses study was performed by using the Pt-coated W-coil.


Direct pyrolysis mass spectrometry studies on thermal degradation characteristics of poly(phenylene vinylene) with well-defined PSt side chains
Nur, Y.; Çolak, Demet; Cianga, I.; Yagci, Y.; Hacaloğlu, Jale (2008-10-01)
Thermal degradation characteristics of a new macromonomer polystyrene with central 4,4'-dicarbaldehyde terphenyl moieties and poly(phenylene vinylene) with well-defined polystyrene (PPV/PSt) as lateral substituents were investigated via direct pyrolysis mass spectrometry. A slight increase in thermal stability of PSt was detected for (PPV/PSt) and attributed to higher thermal stability of PPV backbone. It was almost impossible to differentiate products due to the decomposition of PPV backbone from those pro...
Direct Pyrolysis - Mass Spectrometry Analysis of Thermal Degradation of Thio-Click-Modified Poly(2-oxazoline)
Atilkan, Nurcan; Schlaad, Helmut; NUR, YUSUF; Hacaloğlu, Jale (2014-01-01)
Poly(2‐(3‐butenyl)‐2‐oxazoline)s (PBOX) with glucose‐S‐butyl (Glc) and perfluoroalkyl‐S‐butyl (F) side chains (three samples: Glc/F = 100/0, 0/100, and 88/12) are synthesized by ring‐opening polymerization of 2‐butenyl‐2‐oxazoline and thiol‐ene click photochemistry, and their thermal properties are analyzed by direct‐pyrolysis mass spectrometry. Significant changes in the thermal stability and thermal‐degradation products are observed depending on the structure of the side chain. The thermal degradation of ...
A pyrolysis mass spectrometry study of polythiophene-polyamide composites
Vatansever, F.; Akbulut, Ural; Toppare, Levent Kamil; Hacaloğlu, Jale (1996-01-01)
The thermal behavior of composites of polythiophene and polyamide prepared by mechanical blending and electrochemical synthesis of polythiophene onto an electrode coated with polyamide have been studied thoroughly by the pyrolysis approach under both direct and indirect pyrolysis mass spectrometric analysis conditions. It is determined that the electrolytic film has different properties from the mechanical mixture and the related homopolymers.
In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies
KILINÇ, ERSİN; BAKIRDERE, Sezgin; AYDIN, FIRAT; Ataman, Osman Yavuz (2013-11-01)
Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FMS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS ...
Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse
Kilinc, Ersin; BAKIRDERE, Sezgin; AYDIN, FIRAT; Ataman, Osman Yavuz (2012-07-01)
Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found...
Citation Formats
S. Bora, “Simultaneous determination of bismuth and tellurium using tungsten coil atom trap with inductively coupled plasma mass spectrometry /,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.