Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Influence of micropatterned polymeric substrates on cancer cell behavior
Download
index.pdf
Date
2016
Author
Ermiş Şen, Menekşe
Metadata
Show full item record
Item Usage Stats
250
views
103
downloads
Cite This
The aim of this study was to develop micropatterned surfaces on biodegradable polymers such as PLGA and PLLA and non-degradable polymer PMMA to study cellular responses including proliferation, cellular morphology, nucleus morphology and deformation, focal adhesions and related pathways, cell division and cycle, and epithelial to mesenchymal transition in cancer cells. An array of nine surfaces decorated with micron sized micropillars were produced using photolithography. Saos-2 osteosarcoma and hOB human osteoblast-like cells were cultured on the micropillar array made from PLGA, PLLA or their blends for focal adhesion and micropillar bending studies. Deformations of nuclei on the micropatterned surfaces were studied with Saos-2, hOB, L-929 mouse fibroblast, SH-SY5Y neuroblastoma, and MCF-7 breast carcinoma cells. Cell division and cycle studies were conducted with Saos-2 cells on PLGA and MDA-MB231 and MCF-7 cells on PMMA. All surfaces induced nucleus deformations but smaller interpillar distances were found to be most effective. Of all the cells tested for nucleus deformations, cancer cells (Saos-2, MCF-7, SH-SY5Y) deformed most prominently. Both Saos-2 and hOB cells were found to apply similar forces to bend pillars and highest bending forces were applied on PLGA and PLLA substrates rather than their blends. Micropatterned PMMA substrates were found to effect cell cycle and induce an arrest at G0/G1 phase. RT-qPCR and RNA sequencing analysis demonstrated that Micropatterned PMMA surfaces induced EMT in epithelial breast cancer cells. Micropatterned substrates were proven to affect many cellular processes and intracellular signaling pathways. Cancer cells were found to be more prone to these changes.
Subject Keywords
Cancer.
,
Cytology.
,
Cancer cells.
,
Polylactic acid.
,
Gene expression.
URI
http://etd.lib.metu.edu.tr/upload/12620035/index.pdf
https://hdl.handle.net/11511/25682
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Role of Vibrational Spectroscopy in Stem Cell Research
Aksoy, Ceren; Severcan, Feride (2012-01-01)
Recent researches have mainly displayed the significant role of stem cells in tissue renewal and homeostasis with their unique capacity to develop different cell types. These findings have clarified the importance of stem cells to improve the effectiveness of any cell therapy for regenerative medicine. Identification of purity and differentiation stages of stem cells are the greatest challenges of stem cell biology and regenerative medicine. The existing methods to carefully monitor and characterize the ste...
Influence of micropatterns on human mesenchymal stem cell fate /
Hastürk, Onur; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2016)
Mesenchymal stem cells (MSCs) are promising cell sources for tissue engineering applications as they can differentiate into a variety of adult cells types including osteoblasts. In vivo microenvironment of stem cells is known to provide both biochemical signals and micro- and nanoscale physical cues that influence the behavior and fate of stem cells. The use of soluble chemical factors is the most common strategy to guide the commitment of MSCs to specific lineages, but it is a cause of concern such as unsa...
Effects of oxidative functionalized and aminosilanized carbon nanotubes on the crystallization behaviour of polyamide-6 nanocomposites
Kaynak, Cevdet (2014-04-01)
The purpose of this study is to investigate effects of oxidative functionalized and aminosilanized carbon nanotubes on the (1) isothermal and (2) non-isothermal crystallization kinetics of polyamide-6 by DSC analyses, and (3) crystal structure of injection molded specimens by XRD analyses. Nanocomposites were compounded by using melt mixing technique via twin screw extrusion. Due to basically very effective heterogeneous nucleation effect, both increasing amount and surface functionalization of carbon nanot...
Effects of selenium supplementation on rat heart apex and right ventricle myocardia by using FTIR spectroscopy: A cluster analysis and neural network approach
TOYRAN AL OTAİBİ, NESLİHAN; Severcan, Feride; Severcan, Mete; TURAN, Belma (Elsevier BV, 2008-10-01)
The effects of selenium supplementation on apex and right ventricle myocardia of the rat heart were investigated using Fourier transform infrared (FTIR) spectroscopy by examining the changes in the frequency values of major absorptions arising from lipids and proteins. Cluster analysis was used to discriminate the selenium treated group from the control by utilizing two distinct spectral regions, belonging to absorptions arising from lipids and proteins, respectively. In addition, protein secondary structur...
Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration
Yilgor, Pinar; Sousa, Rui A.; Reis, Rui L.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2010-11-01)
The aim of this study was to develop 3-D tissue engineered constructs that mimic the in vivo conditions through a self-contained growth factor delivery system. A set of nanoparticles providing the release of BMP-2 initially followed by the release of BMP-7 were incorporated in poly(epsilon-caprolactone) scaffolds with different 3-D architectures produced by 3-D plotting and wet spinning. The release patterns were: each growth factor alone, simultaneous, and sequential. The orientation of the fibers did not ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ermiş Şen, “Influence of micropatterned polymeric substrates on cancer cell behavior,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.