Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Readout circuit for resonant MEMS temperature sensors
Date
2016
Author
Asadi, Hamed
Metadata
Show full item record
Item Usage Stats
373
views
0
downloads
Cite This
High precision is the dominant advantage that resonant sensors have over other types of analog sensors (sensors with a subsequent analog-to-digital converter). The resolution of these precise sensors is determined by both frequency resolution and sensitivity of the sensor. The sensitivity is highly related to the sensitivity of the MEMS resonator. However, the frequency resolution is dominantly defined by the closed-loop circuitry if noise contribution of the resonator is assumed to be smaller than that of the electronic circuitry. In this thesis, resolution reduction of a closed-loop resonant sensor is intended to be accomplished. The DETF (double-ended tuning-fork) MEMS resonator used in this study is already designed and fabricated in METU MEMS. The TCF (temperature coefficient of frequency) of this resonator is 53 ppm/K which results in a sensitivity of 9.27 Hz/K with 174.818 kHz resonant frequency. This implies that the sensitivity is fixed and the only remaining parameter to achieve a better resolution for the sensor is the frequency resolution of the closed-loop circuitry. Since closed-loop with an AGC (automatic gain control) block has superior far-from-carrier phase noise performance in comparison to a closed-loop circuit with a limiter (e.g., comparator), this scheme is chosen to be implemented in XFAB 0.35um CMOS process. For the implemented closed-loop circuit in CMOS technology, the minimum achievable noise floor at the steady state oscillation is obtained to be -107 dBc/Hz. Based on the simulation results, when the "white phase" noise is filtered out, the sensor resolution is obtained to be around 0.021 degrees Celsius. To verify the functionality of the design in the CMOS technology, the closed-loop circuit is implemented again by discrete components. The stability and resolution evaluations of the implemented circuit are achieved by Allan deviation. The bias instability point is measured to be about 0.0045 degrees Celsius with 5.28 second averaging time. In this thesis, the main goal of the design, especially in XFAB 0.35um CMOS Process, is to study and characterize the noise and phase noise performances of the closed loop circuit. Thus, the resolution improvement can be accomplished by minimizing the noise in the loop.
Subject Keywords
Detectors.
,
Resonance.
,
Electromechanical devices.
,
Microelectromechanical systems.
URI
http://etd.lib.metu.edu.tr/upload/12620570/index.pdf
https://hdl.handle.net/11511/25998
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Comparative design of millimeter wave RF-MEMS phase shifters
Kobal, Enis; Demir, Şimşek; Department of Electrical and Electronics Engineering (2016)
Phase shifters are widely used for electronic beam steering for various antenna applications. This thesis presents design and comparison of 3 di erent 3-bit transmission type phase shifters, which are switch-line, Distributed MEMS Transmission Line (DMTL) and triple stub phase shifters, realized with capacitive contact Radio Frequency (RF) Micro-Electro-Mechanical Systems (MEMS) switches for Ka-Band applications. For the design of switch-line phase shifter reducing the sensitivity of the electrical performa...
A Capacitive MEMS Accelerometer Readout with Concurrent Detection and Feedback Using Discrete Components
Terzioglu, Yunus; Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (2014-05-08)
This paper presents an analog readout method for capacitive MEMS accelerometers in which the feedback actuation and capacitive detection are achieved simultaneously on the same electrode set. The presented circuit operates in closed-loop for improved linearity, and it is constructed in a hybrid platform package in which off-the-shelf discrete components are used together with the silicon-on-glass micro-accelerometer. The system is developed as a practical solution to reduce the complexity of the readout cir...
A New Baseband Equivalent Model for Sense Mode Dynamics and Its Effects on Force-Feedback Controller Design for MEMS Gyroscopes
Eminoglu, Burak; Alper, Said Emre; Akın, Tayfun (2011-10-31)
his paper introduces a new baseband equivalent model for the sense mode dynamics of a MEMS gyroscope providing a more accurate force-feedback controller design applicable to high-performance sensors with a small frequency separation between drive and sense modes. This new baseband equivalent model for sense dynamics correctly models the step response of the system allowing both “true prediction of the system bandwidth”, with an error less than 1%, and “proper control of the transient behavior” such as ringi...
A Versatile 5th order sigma-delta modulation circuit for MEMS capacitive accelerometer characterization /
Asgarli, Tunjar; Akın, Tayfun; Department of Electrical and Electronics Engineering (2014)
With the significant developments in capacitive MEMS inertial sensors, tons of studies in the literature trying to enhance the performance parameters of MEMS capacitive accelerometer systems such as linearity, noise floor and bandwidth further has emerged. However, all the studies are conducted on a certain reference point, which is mainly the properties of the accelerometer sensor that alter a lot in the design of the high performance interface readout circuit. The designed interface circuits usually adopt...
Development of an integrated resonant MEMS temperature sensor
Köse, Talha; Azgın, Kıvanç; Akın, Tayfun; Department of Mechanical Engineering (2016)
This thesis presents the design, fabrication and characterization of a high performance, integrated, resonant MEMS temperature sensor, and temperature compensation of a capacitive MEMS accelerometer. Two different double-ended-tuning-fork (DETF) type resonator designs are developed and characterized for temperature sensing. The strain-amplifying beam structure is added to the DETF resonators in order to enhance thermal strain induced on the DETF tines due to the different thermal expansion coefficients of t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Asadi, “A Readout circuit for resonant MEMS temperature sensors,” M.S. - Master of Science, Middle East Technical University, 2016.