A New Baseband Equivalent Model for Sense Mode Dynamics and Its Effects on Force-Feedback Controller Design for MEMS Gyroscopes

2011-10-31
Eminoglu, Burak
Alper, Said Emre
Akın, Tayfun
his paper introduces a new baseband equivalent model for the sense mode dynamics of a MEMS gyroscope providing a more accurate force-feedback controller design applicable to high-performance sensors with a small frequency separation between drive and sense modes. This new baseband equivalent model for sense dynamics correctly models the step response of the system allowing both “true prediction of the system bandwidth”, with an error less than 1%, and “proper control of the transient behavior” such as ringing, settling time, etc. It has also been demonstrated that the designed force-feedback controller based on the new model improves the angle random walk and bias stability performance of a MEMS gyroscope by a factor of 9 and 3, respectively, compared to the same controller architecture design based on the conventional over-simplified sense dynamic model.

Suggestions

A Novel Software for Automatic Calibration Factor Measurement of RF Power Sensors
Kizilbey, Oguzhan; Arslan, Murat; Bayrak, Yusuf; Çetinkaya, Anıl; Yugruk, Aydin; Danaci, Erkan (2022-01-01)
In this letter, a software for calibration factor (CF) measurement of radio frequency (RF) power sensors (PS) by using VNA-based direct comparison transfer method (VBDCTM) was developed on C# platform. Measurements were performed between 10 MHz and 18 GHz frequency range. When the calibration factors calculated with conventional CF measurement method and novel software were compared, a maximum difference of 4.56% was found in the 10 MHz - 18 GHz frequency band. Therefore, the automatic CF measurement softwa...
A development tool for design and analysis of MEMS based EM energy scavengers
Turkyilmaz, Serol; Külah, Haluk; Muhtaroglu, Ali (2010-12-01)
This paper presents a development tool for estimating the performance of an electromagnetic (EM) vibration-to-electrical MEMS energy scavenger for low power mobile computing and wireless sensor applications. The tool takes design and excitation parameters as input, and estimates output voltage waveforms and power levels. It has been correlated against validation data, and used for early evaluation and design of new MEMS modules, which could not be optimized using off-the-shelf design packages. The tool was ...
A CMOS switched-capacitor interface circuit for an integrated accelerometer
Külah, Haluk; Najafi, K (2000-01-01)
This paper presents a CMOS interface electronics for monolithic micromachined capacitive accelerometer systems. The interface electronics is a fully differential switched-capacitor charge integrator with its internal clock generator and sensor feedback circuit for closed-loop operation. The circuit is designed for open-loop and closed-loop operations, and provides both digital and differential analog outputs. One of the main advantages of this chip is that it can be monolithically integrated with the sensor...
AN AUTOMATIC MODE MATCHING SYSTEM FOR A HIGH Q-FACTOR MEMS GYROSCOPE USING A DECOUPLED PERTURBATION SIGNAL
Yesil, F.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper reports a closed-loop controller system developed for in-run automatic matching of the drive and sense mode resonance frequencies of a MEMS gyroscope with a high quality factor (Q). This is achieved by injecting a perturbation signal to the quadrature cancellation loop, while keeping it decoupled from the angular rate control loop. The new controller is implemented in a CMOS ASIC together with the other sensor control loops, and it is verified to maintain matched-mode state under changing environ...
A Readout circuit for resonant MEMS temperature sensors
Asadi, Hamed; Akın, Tayfun; Azgın, Kıvanç; Department of Electrical and Electronics Engineering (2016)
High precision is the dominant advantage that resonant sensors have over other types of analog sensors (sensors with a subsequent analog-to-digital converter). The resolution of these precise sensors is determined by both frequency resolution and sensitivity of the sensor. The sensitivity is highly related to the sensitivity of the MEMS resonator. However, the frequency resolution is dominantly defined by the closed-loop circuitry if noise contribution of the resonator is assumed to be smaller than that of ...
Citation Formats
B. Eminoglu, S. E. Alper, and T. Akın, “A New Baseband Equivalent Model for Sense Mode Dynamics and Its Effects on Force-Feedback Controller Design for MEMS Gyroscopes,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34301.