Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling of surge and swab pressure of yield power law fluids
Download
index.pdf
Date
2016
Author
Erge, Öner
Metadata
Show full item record
Item Usage Stats
213
views
91
downloads
Cite This
A mathematical modeling work and computational fluid dynamics (CFD) analysis of surge and swab pressures in concentric annuli is conducted. A commercial CFD package is used to validate the developed model of the flow during surge and swab in concentric annuli. Developed mathematical model incorporates the Yield Power Law (YPL) fluid behavior for closed-end pipes under laminar flow conditions. The results of the mathematical model and CFD analysis is compared with the models from literature. CFD analysis is initially compared with the analytical solution of the surge and swab velocity profiles of a Newtonian fluid to validate the CFD approach. A good agreement is obtained with the analytical solution and the results from the CFD analysis. A similar approach is followed and proposed numerical solution is compared with the results from the CFD analysis to validate the proposed approach. A good agreement is observed with the result from CFD and the proposed finite differencing scheme. Velocity profile comparison among numerical solution, analytical solution and CFD analysis yields less than 5% average absolute percent error. A 3D geometry of concentric annuli is used in the CFD analysis. Also, a mathematical model is developed considering an annular geometry with different inner and outer pipe sizes. The effect of the degree of curvature difference between the inner and outer pipes while surge and swab is captured both with the CFD analysis and the mathematical model. With this approach, more accurate results are obtained than approximating the annuli to a slot. Additionally, dimensionless velocity profiles are presented that better explain the flow during surge and swab conditions in concentric annuli while the inner pipe is reciprocating in steady-state. Most of the drilling fluids can be characterized with Yield Power Law (YPL) model. YPL model includes a yield stress term similar to Bingham Plastic and has the shear thinning ability as the Power Law fluids. YPL model accurately estimates the drilling fluid behavior in low and high shear rates. After drilling, pulling out or running a BHA in the vertical section or running casing with centralizers approximates the position of the tubular to concentric. Therefore, mathematical modeling and CFD analysis of the swab and surge pressures of YPL fluids in concentric annuli has potential to optimize the tripping operations that will help not only avoid hole problems, but also reduce the non-productive time.
Subject Keywords
Drilling muds.
,
Yield surfaces.
,
Oil well drilling.
,
Computational fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12620261/index.pdf
https://hdl.handle.net/11511/26003
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Accurate modeling of surge and swab pressures of yield power law fluids in concentric annuli
Erge, O.; Akın, Serhat; Gucuyener, I.h. (2018-01-01)
Accurate numerical modeling of surge and swab pressures in concentric annuli is proposed. The numerical scheme is developed for the laminar flow occurring during the drillstring axial movement. The model incorporates Yield Power Law (YPL) fluids, which is a good representation of the most of the drilling fluids. A commercial computational fluid dynamics (CFD) package is used to validate the developed numerical model. Also, the mathematical model and CFD analysis are compared with the existing models from li...
Application of spring analogy mesh deformation technique in airfoil design optimization
Yang, Yosheph; Özgen, Serkan; Department of Aerospace Engineering (2015)
In this thesis, an airfoil design optimization with Computational Fluid Dynamics (CFD) analysis combined with mesh deformation method is elaborated in detail. The mesh deformation technique is conducted based on spring analogy method. Several improvements and modifications are addressed during the implementation of this method. These enhancements are made so that good quality of the mesh can still be maintained and robustness of the solution can be achieved. The capability of mesh deformation is verified by...
Numerical simulation of scour at the rear side of a coastal revetment
Şentürk, Barış Ufuk; Guler, Hasan Gokhan; Baykal, Cüneyt (2023-05-01)
This paper presents the results of a numerical modeling study on the scouring of unprotected rear side material of a rubble mound coastal revetment due to the overtopping of solitary-like waves utilizing a coupled hydro-morphodynamic computational fluid dynamics (CFD) model. Three cases having various wave heights are tested with six different turbulence models together with different wall functions. The hydrodynamic results (free-surface elevations, overtopping volumes, and jet thicknesses) and morphologic...
Numerical analysis of convective heat transfer of nanofluids in circular ducts with two-phase mixture model approach
Sert, İsmail Ozan; Sezer Uzol, Nilay (2016-09-01)
Computational fluid dynamics simulations for initially hydro-dynamically fully developed laminar flow with nanofluids in a circular duct under constant wall temperature condition are performed with two-phase mixture model by using Fluent software. Thermal behaviors of the system are investigated for constant wall temperature condition for Al2O3/water nanofluid. Hamilton–Crosser model and the Brownian motion effect are used for the thermal conductivity model of nanofluid instead of the Fluent default model f...
Improved combustion model of boron particles for ducted rocket combustion chambers
Kalpakli, Bora; Acar, Emir Bedig; Ulaş, Abdullah (Elsevier BV, 2017-5)
A combustion model of boron particles for detailed Computational Fluid Dynamics (CFD) based simulations of ducted rocket combustion chambers is studied. It is aimed to construct a model for combustion of boron containing gas mixtures ejected from a solid propellant gas generator. This model includes all main physical processes required to define an accurate particle combustion simulation. The reaction rate modeling in similar, previous studies are improved for ramjet combustion chambers and this model provi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Erge, “Modeling of surge and swab pressure of yield power law fluids,” M.S. - Master of Science, Middle East Technical University, 2016.