# Modeling of surge and swab pressure of yield power law fluids

2016
Erge, Öner
A mathematical modeling work and computational fluid dynamics (CFD) analysis of surge and swab pressures in concentric annuli is conducted. A commercial CFD package is used to validate the developed model of the flow during surge and swab in concentric annuli. Developed mathematical model incorporates the Yield Power Law (YPL) fluid behavior for closed-end pipes under laminar flow conditions. The results of the mathematical model and CFD analysis is compared with the models from literature. CFD analysis is initially compared with the analytical solution of the surge and swab velocity profiles of a Newtonian fluid to validate the CFD approach. A good agreement is obtained with the analytical solution and the results from the CFD analysis. A similar approach is followed and proposed numerical solution is compared with the results from the CFD analysis to validate the proposed approach. A good agreement is observed with the result from CFD and the proposed finite differencing scheme. Velocity profile comparison among numerical solution, analytical solution and CFD analysis yields less than 5% average absolute percent error. A 3D geometry of concentric annuli is used in the CFD analysis. Also, a mathematical model is developed considering an annular geometry with different inner and outer pipe sizes. The effect of the degree of curvature difference between the inner and outer pipes while surge and swab is captured both with the CFD analysis and the mathematical model. With this approach, more accurate results are obtained than approximating the annuli to a slot. Additionally, dimensionless velocity profiles are presented that better explain the flow during surge and swab conditions in concentric annuli while the inner pipe is reciprocating in steady-state. Most of the drilling fluids can be characterized with Yield Power Law (YPL) model. YPL model includes a yield stress term similar to Bingham Plastic and has the shear thinning ability as the Power Law fluids. YPL model accurately estimates the drilling fluid behavior in low and high shear rates. After drilling, pulling out or running a BHA in the vertical section or running casing with centralizers approximates the position of the tubular to concentric. Therefore, mathematical modeling and CFD analysis of the swab and surge pressures of YPL fluids in concentric annuli has potential to optimize the tripping operations that will help not only avoid hole problems, but also reduce the non-productive time.

# Suggestions

 Accurate modeling of surge and swab pressures of yield power law fluids in concentric annuli Erge, O.; Akın, Serhat; Gucuyener, I.h. (2018-01-01) Accurate numerical modeling of surge and swab pressures in concentric annuli is proposed. The numerical scheme is developed for the laminar flow occurring during the drillstring axial movement. The model incorporates Yield Power Law (YPL) fluids, which is a good representation of the most of the drilling fluids. A commercial computational fluid dynamics (CFD) package is used to validate the developed numerical model. Also, the mathematical model and CFD analysis are compared with the existing models from li...
 Application of spring analogy mesh deformation technique in airfoil design optimization Yang, Yosheph; Özgen, Serkan; Department of Aerospace Engineering (2015) In this thesis, an airfoil design optimization with Computational Fluid Dynamics (CFD) analysis combined with mesh deformation method is elaborated in detail. The mesh deformation technique is conducted based on spring analogy method. Several improvements and modifications are addressed during the implementation of this method. These enhancements are made so that good quality of the mesh can still be maintained and robustness of the solution can be achieved. The capability of mesh deformation is verified by...
 Improved combustion model of boron particles for ducted rocket combustion chambers Kalpakli, Bora; Acar, Emir Bedig; Ulaş, Abdullah (Elsevier BV, 2017-5) A combustion model of boron particles for detailed Computational Fluid Dynamics (CFD) based simulations of ducted rocket combustion chambers is studied. It is aimed to construct a model for combustion of boron containing gas mixtures ejected from a solid propellant gas generator. This model includes all main physical processes required to define an accurate particle combustion simulation. The reaction rate modeling in similar, previous studies are improved for ramjet combustion chambers and this model provi...
 Design and analysis of a vertical axis water turbine for river applications using computational fluid dynamics Demircan, Eren; Aksel, Mehmet Haluk; Pınarcıoğlu, Mehmet Melih; Department of Mechanical Engineering (2014) The main purpose of this study is to design a Darrieus rotor type vertical axis water turbine using Computational Fluid Dynamics (CFD) in order to be used in river currents. The CFD modeling is based on two dimensional numerical solution of the rotor motion using commercial Unsteady Reynolds Averaged Navier-Stokes solvers, Ansys Fluent and CFX. To validate the two dimensional numerical solution, an experimental Darrieus rotor type water turbine from literature is studied and performance of several turbulenc...
 Computation of transient thermal stresses in elastic-plastic tubes: Effect of coupling and temperature-dependent physical properties Eraslan, Ahmet Nedim (2002-06-01) The objective of this study is to obtain the transient solution of the thermoelastic-plastic deformation of internal heat-generating tubes by considering the thermomechanical coupling effect and the temperature-dependent physical properties of the material. The previously developed steady-state model describing the elastic-plastic behavior of the tubes is modified to obtain the transient solution. The propagation of the elastic-plastic interface for a given heat load is obtained; and the corresponding stres...
Citation Formats
Ö. Erge, “Modeling of surge and swab pressure of yield power law fluids,” M.S. - Master of Science, Middle East Technical University, 2016. 