Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Spectral graph based approach for analysis of 3D lidar point clouds
Download
index.pdf
Date
2017
Author
Bayram, Eda
Metadata
Show full item record
Item Usage Stats
366
views
161
downloads
Cite This
Airborne Laser Scanning is a well-known remote sensing technology, which provides quite dense and highly accurate, yet unorganized, point cloud descriptions of the earth surface. However, processing of such a 3D point cloud is quite challenging due to its irregular structure and 3D geometry. In this thesis,two novel approaches for the analysis of unorganized 3D point cloud data are proposed, specifically the ones that are generated by the airborne mounted LIDAR sensor. These methods rely on the spectral graph based and graph signal processing techniques which gain attention in the recent years. The state-of-the-art techniques addressing the problems of LIDAR point clouds are first examined. Next, the theory presented by the spectral graph based methods is reviewed to analyze their solutions. Since irregular discrete data lying on a high dimensional geometry, such as LIDAR point clouds, can be conveniently represented by weighted graphs, spectral graph methods based on such weighted graphs enable spectral analysis of the data representation, as in classical Fourier analysis for signal processing. In the light of the revisited spectral graph literature, one can examine techniques for clustering as well as edge detection problems by using graph representation of the unorganized 3D point clouds. The graph based representation introduces the opportunity of analysis of the signal over its original input space; therefore, it provides qualified comprehension of the data. Based on simulations, it is shown that the graph spectral solutions can acquire remarkable advance in the analysis of unorganized 3D point clouds and the experimental results indicate the potentials of this new approach.
Subject Keywords
Graph theory.
,
Remote sensing.
,
Signal processing.
URI
http://etd.lib.metu.edu.tr/upload/12620895/index.pdf
https://hdl.handle.net/11511/26379
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A Graph Signal Filtering Based Approach for Detection of Different Edge Typeson Airborne LiDAR Data
Bayram, Eda; Vural, Elif; Alatan, Abdullah Aydın (2017-09-12)
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the d...
A graph signal filtering-based approach for detection of differentedge types on airborne lidar data,
Bayram, Eda; Vural, Elif; Alatan, Abdullah Aydın (2017-09-14)
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the d...
Parameter estimation for instantaneous spectral imaging
Öktem, Sevinç Figen; Davila, Joseph M (2014-05-04)
Spectral imaging is a fundamental diagnostic technique in physical sciences with widespread application. Conventionally, spectral imaging techniques rely on a scanning process, which renders them unsuitable for dynamic scenes. Here we study the problem of estimating the physical parameters of interest from the measurements of a non-scanning spectral imager based on a parametric model. This inverse problem, which can be viewed as a multi-frame deblurring problem, is formulated as a maximum a posteriori (MAP)...
Tracker-aware adaptive detection: An efficient closed-form solution for the Neyman-Pearson case
Aslan, Murat Samil; Saranlı, Afşar; Baykal, Buyurman (Elsevier BV, 2010-09-01)
A promising line of research for radar systems attempts to optimize the detector thresholds so as to maximize the overall performance of a radar detector-tracker pair. In the present work, we attempt to move in a direction to fulfill this promise by considering a particular dynamic optimization scheme which relies on a non-simulation performance prediction (NSPP) methodology for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE). By using a suitable functional appr...
Analysis of Airborne LiDAR Point Clouds With Spectral Graph Filtering
Bayram, Eda; Frossard, Pascal; Vural, Elif; Alatan, Abdullah Aydın (Institute of Electrical and Electronics Engineers (IEEE), 2018-08-01)
Separation of ground and nonground measurements is an essential task in the analysis of light detection and ranging (LiDAR) point clouds; however, it is challenge to implement a LiDAR filtering algorithm that integrates the mathematical definition of various landforms. In this letter, we propose a novel LiDAR filtering algorithm that adapts to the irregular structure and 3-D geometry of LiDAR point clouds. We exploit weighted graph representations to analyze the 3-D point cloud on its original domain. Then,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Bayram, “Spectral graph based approach for analysis of 3D lidar point clouds,” M.S. - Master of Science, Middle East Technical University, 2017.