Topologically massive gravity : anyon scattering, weyl-gauging and causality

Download
2017
Kılıçarslan, Ercan
In this thesis, we studied the Topologically Massive Gravity (TMG) in two perspectives. Firstly, by using real scalar and abelian gauge fields, we built the Weyl-invariant extension of TMG which unifies cosmological TMG and Topologically Massive Electrodynamics (TME) with a Proca mass term. Here, we have demonstrated that the presence of (Anti)-de Sitter spaces as the background solution, spontaneously breaks the local Weyl symmetry, whereas the radiative corrections at two-loop level breaks the symmetry in flat vacuum. The breaking of Weyl symmetry fixes all the dimensionful parameters and provides masses to spin-2 and spin-1 particles as in the Higgs mechanism. Secondly, we calculated the tree-level scattering amplitude in the cosmological TMG plus the Fierz-Pauli mass term in (Anti)-de Sitter spaces and accordingly found the relevant weak field potential energies between two covariantly conserved localized point-like spinning sources. We have shown that in addition to spin-spin and mass-mass interactions, there also occurs a mass-spin interaction which is generated by the gravitational Chern-Simons term that changes the initial spin of particles converting them to gravitational anyons. In addition to these works concerning TMG, we have also discussed the issue of local causality in 2 + 1 dimensional gravity theories and shown that Einstein’s gravity, TMG and the new massive gravity are causal as long as the sign of the Newton’s constant is set to negative. We study the causality discussion with the Shapiro time delay method. 

Suggestions

Basics of massive spin-2 theories
Kürekçi, Şahin; Tekin, Bayram; Department of Physics (2015)
In this thesis, basics of massive spin-2 theories are studied. The theory of general relativity cannot explain some problems in very small and in very large scales and it needs a modification. The way of modifying general relativity by giving mass to the propagating particle graviton is called massive gravity. The first correct massive gravity theory is the linear theory written by Fierz and Pauli. However, later on it has been found that this theory does not match up with the physical predictions of genera...
Dynamical correlations in quasi-one-dimensional electron gas
Bulutay, C; Tanatar, B (IOP Publishing, 1998-09-01)
We study the short-range correlations in a quasi-one-dimensional electron gas within the dynamical version of the self-consistent field theory. The static structure factor exhibits a peak structure at low densities. The zero-frequency limit of the dynamic local-field factor has structure not encountered in the previous applications of the present method. The large oscillations at low densities observed in the pair-correlation function indicates a transition to a partially ordered state.
Topologically massive gravity as a Pais-Uhlenbeck oscillator
Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (IOP Publishing, 2006-12-21)
We give a detailed account of the free- field spectrum and the Newtonian limit of the linearized ` massive' ( Pauli -Fierz), 'topologically massive' ( Einstein Hilbert - Chern - Simons) gravity in 2 + 1 dimensions about a Minkowski spacetime. For a certain ratio of the parameters, the linearized free theory is Jordan diagonalizable and reduces to a degenerate ` Pais - Uhlenbeck' oscillator which, despite being a higher derivative theory, is ghost free.
Conformal symmetry in field theory
Huyal, Ulaş; Tekin, Bayram; Department of Physics (2011)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
Born-Infeld gravity theories in D-dimensions
Şişman, Tahsin Çağrı; Tekin, Bayram; Department of Physics (2012)
Born-Infeld gravity proposed by Deser and Gibbons takes its origin from two ideas: Born-Infeld electrodynamics and Eddington's gravitational action. The theory is defined with a determinantal action involving the Ricci tensor as in the Eddington's theory; however, in contrast, the independent variable is the metric as in Einstein's gravity and the action is constructed in analogy with the action of the Born-Infeld electrodynamics. Main challenge in defining a Born-Infeld type gravity is obtaining a unitary ...
Citation Formats
E. Kılıçarslan, “Topologically massive gravity : anyon scattering, weyl-gauging and causality,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.