Fracture analysis of spun-cast concrete poles using the phase-field method

Download
2017
Azim Azary, Ali
Shrinkage is an important type of deformation in hardening concrete, which happens mainly in the cement paste and may cause significant damage if restrained. Spun-cast concrete poles are among structural members that are prone to this type of damage if not fabricated properly. They are used extensively in structures such as columns, piles, and utility poles to name a few. In this thesis, we study the differential shrinkage-induced cracking in spun-cast members computationally using the Phase Field Method within the framework of the Finite Element Method. The Phase Field Method is a thermodynamically based method that is often used to model phase changes and evolving microstructures in materials. The Phase Field Models based on variational formulation for fracture has become popular recently, and proven capable of accurately predicting complex crack behavior in both two and three dimensions. The performance of the proposed approach to the differential shrinkage-induced cracking is demonstrated through the representative numerical examples. 

Suggestions

Seismic behavior and improvement of autoclaved aerated concrete infill walls
Binici, Barış; Canbay, Erdem; Uzgan, Ugur; Eryurtlu, Zafer; Bulbul, Koray; Yakut, Ahmet (Elsevier BV, 2019-08-15)
Performance of infill walls in reinforced concrete (RC) frames is generally questionable under the combined action of in-plane and out-of-plane seismic demands. Despite the vast number of tests investigating the behavior of brick masonry infill walls in RC frames, past research is limited for infill walls made of Autoclaved Aerated Concrete (AAC) blocks. In the first part of the study, six single-bay single-story half-scaled RC frames were tested under the action of in-plane cyclic displacement excursions a...
Comparative evaluation of steel mesh, steel fiber and high performance polypropylene fiber-reinforced concrete in panel/beam tests
Ceylan, Semih; Turanlı, Lütfullah; Department of Civil Engineering (2014)
Comparison of concrete mixtures containing steel mesh, steel fiber and polypropylene fibers were evaluated in terms of toughness, flexural strength, compressive strength and split tensile strength. Five types of concrete were prepared with steel mesh, steel fiber and polypropylene fiber with the identical water/cement (w/c) ratio and the identical workability. 10x60x60 cm plates, 8x8x32 cm beams and 10x20 cm cylindrical concrete specimens were prepared. Compressive strength, split-tensile strength and tough...
Stress strain behaviour of structural lightweight concrete under confinement
Şenel, Mehmet Ali; Tasbahjı, Tayseer; Turanlı, Lutfullah; Sarıtaş, Afşin (null; 2015-12-11)
: In this study, stress-strain behavior of structural lightweight concrete is studied under unconfined and confined conditions. To this end, the use of naturally occurring perlite material as lightweight aggregate and cement replacement material is considered. Although there are several studies on the confinement effects on normal weight concrete, there is lack of data on the confinement behavior attained for structural lightweight concrete by spiral or stirrup reinforcement. In order to evaluate the perfor...
Inter-granular cracking through strain gradient crystal plasticity and cohesive zone modeling approaches
Yalçınkaya, Tuncay; Fırat, Arzu (Elsevier BV, 2019-10-01)
Even though intergranular fracture is generally regarded as a macroscopically brittle mechanism, there are various cases where the fracture occurs at the grain boundaries with considerable plastic deformation at the macroscopic scale. There exists several microstructural reasons for grain boundaries to host crack initiation. They can interact with impurities and defects, can provide preferential location for precipitation, can behave as a source of dislocations and can impede the movement of dislocations as...
Overlapping lattice modeling for concrete fracture simulations using sequentially linear analysis
Aydın, Beyazıt Bestami; Binici, Barış; Tuncay, Kağan; Department of Civil Engineering (2017)
Estimation of the crack location and width in concrete structures is important due to the sustained damage in structures as a result of extreme loads and aging. The location and width of cracks are the most influential parameters for making decisions on the structure service life. Despite significant developments, the computational modelling of concrete fracture initiation and propagation are still challenging tasks. Many different numerical approaches, most of them based on finite element analysis, have be...
Citation Formats
A. Azim Azary, “Fracture analysis of spun-cast concrete poles using the phase-field method,” M.S. - Master of Science, Middle East Technical University, 2017.