Advanced circuit architectures for readout electronics of low-cost microbolometer focal plane arrays

Download
2017
Çöloğlu, Mustafa Haluk
This thesis presents a study on the design and characterization of advanced circuit architectures for readout electronics of low-cost microbolometer focal plane arrays (FPAs). In this respect, two advanced circuit architectures are developed in order to improve the performance, flexibility, and simplicity of use of the microbolometer based low-cost thermal imaging sensors. The first circuit architecture is developed for the readout electronics of 40x40 focal plane array (FPA) with 60 µm pixel pitch using 0.35 µm CMOS technology and contains several digital circuit blocks such as a digital controller, row scanner, column multiplexer, serial peripheral interface (SPI), sensor configuration memory, and pixel level biasing (PLB) memory assigned to the selected FPA row. The digital controller block allows the sensor to generate its own timing signals using only an external clock signal. The row scanner performs a selection of single FPA row at a time and the column multiplexer serializes the analog outputs of the column readout channels. A standard 4-wire SPI is designed to provide a simple communication means between the sensor memory and external controller. This programmability provides flexible operation under different conditions. The designed circuit blocks in the first sensor were tested and verified, then, first infrared images were obtained from the sensor. In order to improve the sensor performance, a simple but very efficient detector bias calibration algorithm is developed on Field-ProgrammableGate-Array (FPGA). The test results of the developed algorithm show that the effects of all non-uniformity sources can be compensated in just 7 frames with simple camera electronics. The second circuit architecture is developed for the readout electronics of 80x80 FPA with 35 µm pixel pitch using 0.18 µm CMOS technology. Besides the circuit blocks developed for the first sensor, the second circuit architecture has several important improvements. Firstly, the PLB memory of the second sensor is designed to store the calibration data of all pixels. This improvement simplifies the physical interface between the sensor and camera electronics, since no real time data transmission is required to fill PLB memory. Secondly, the detector bias calibration algorithm developed for the first sensor is integrated into the second sensor. Thanks to this improvement, the second sensor is able to self-calibrate itself by using only on-chip components. Lastly, the image windowing feature, which may be required in some applications to decrease total power consumption of the sensor by reducing the resolution of the output image, is added to the second sensor. The circuit architectures developed in the scope of this thesis can be used for all types of microbolometer FPAs to improve their performance. The developed circuit architecture for the second sensor makes it the first thermal imaging sensor having fully on-chip non-uniformity correction feature in Turkey.  

Suggestions

A current mirroring integration based readout circuit for high performance infrared FPA applications
Külah, Haluk; Akın, Tayfun (2003-04-01)
This paper reports a current mirroring integration (CMI) CMOS readout circuit for high-resolution infrared focal plane array (FPA) applications. The circuit uses a feedback structure with current mirrors to provide stable bias voltage across the photodetector diode, while mirroring the diode current to an integration capacitor. The integration capacitor can be placed outside of the unit pixel, reducing the pixel area and allowing to integrate the current on larger capacitance for larger charge storage capac...
Development and characterization of low-cost uncooled infrared sensors for commercial applications
Tankut, Firat; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2013)
This thesis reports the study on the development and characterization of low-cost uncooled microbolometer type infrared detectors, which are fabricated using standard CMOS and MEMS processes. Characterization of the detectors is the first step of developing infrared sensors with better performance. The characterized pixel has a 70 μm pitch and includes 4 serially connected diodes as the detector circuit. Thermal conductance (Gth), temperature sensitivity (TC) and, optical absorption are measured in scope of...
Development of high fill factor and high performance uncooled infrared detector pixels
Küçük, Şeniz Esra; Akın, Tayfun; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design, fabrication and characterization of high performance and high fill factor surface micromachined uncooled infrared resistive microbolometer detectors which can be used in large format focal plane arrays (FPAs). The detector pixels, which have a pixel pitch of 25 μm, are designed and fabricated as two-level structures using the enhanced sandwich type resistor while the active material is selected as Yttrium Barium Copper Oxide (YBCO). First level of the pixel structure is allo...
Low-cost uncooled infrared detector arrays in standard CMOS
Eminoglu, S; Tanrikulu, MY; Akın, Tayfun (2003-04-25)
This paper reports the development of a low-cost 128 x 128 uncooled infrared focal plane array (FPA) based on suspended and thermally isolated CMOS p(+)-active/n-well diodes. The FPA is fabricated using a standard 0.35 mum CMOS process followed by simple post-CMOS bulk micromachining that does not require any critical lithography or complicated deposition steps; and therefore, the cost of the uncooled FPA is almost equal to the cost of the CMOS chip. The post-CMOS fabrication steps include an RIE etching to...
A readout circuit for QWIP infrared detector arrays using current mirroring integration
Tepegoz, M; Akın, Tayfun (2003-09-18)
This paper reports a current mirroring integration (CMI) CMOS readout circuit for high-resolution Quantum Well Infrared Photodetectors (QWIPs). The circuit uses a feedback structure with current mirrors to provide stable bias voltage across the photodetectors, which can be adjusted between 0 V and 3.5V. The photodetector current is mirrored to an integration capacitor which can be placed outside of the unit pixel, reducing the pixel area and allowing to integrate the current on larger capacitances for large...
Citation Formats
M. H. Çöloğlu, “Advanced circuit architectures for readout electronics of low-cost microbolometer focal plane arrays,” M.S. - Master of Science, Middle East Technical University, 2017.