On some classes of semi-discrete darboux integrable equations

Download
2017
Bilen, Ergün
In this thesis we consider Darboux integrable semi-discrete hyperbolic equations of the form $t_{1x} = f(t,t_{1}, t_{x}), \frac{\partial f}{\partial t_{x}} \neq 0.$ We use the notion of characteristic Lie ring for a classification problem based on dimensions of characteristic $x$- and $n$-rings. Let $A = (a_{ij})_{N\times N}$ be a $N\times N$ matrix. We also consider semi-discrete hyperbolic equations of exponential type $u_{1,x}^{i} - u_{x}^{i} = e^{\sum a_{ij}^{+}u_{1}^{j} + \sum a_{ij}^{-}u^{j}}, i,j = 1,2,\dots,N.$ We find the conditions on $a_{ij}$'s so that the above equation is Darboux integrable when $N=2$.

Suggestions

On entire rational maps of real surfaces
Ozan, Yıldıray (The Korean Mathematical Society, 2002-01-01)
In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
ON STEIN MANIFOLDS M FOR WHICH O(M) IS ISOMORPHIC TO O(DELTA-N) AS FRECHET SPACES
Aytuna, Aydın (Springer Science and Business Media LLC, 1988-9)
We give a characterization of Stein manifolds M for which the space of analytic functions,O(M), is isomorphic as Fréchet spaces to the space of analytic functions on a polydisc interms of the existence of a plurisubharmonic function on M with certain properties. We discuss some corollaries of this result and give some examples.
On the sequential order continuity of the C(K)-space
Ercan, Z.; Onal, S. (Springer Science and Business Media LLC, 2007-03-01)
As shown in [1], for each compact Hausdorff space K without isolated points, there exists a compact Hausdorff P'-space X but not an F-space such that C(K) is isometrically Riesz isomorphic to a Riesz subspace of C(X). The proof is technical and depends heavily on some representation theorems. In this paper we give a simple and direct proof without any assumptions on isolated points. Some generalizations of these results are mentioned.
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
Invariant subspaces for Banach space operators with an annular spectral set
Yavuz, Onur (2008-01-01)
Consider an annulus Omega = {z epsilon C : r(0) 0 such that parallel to p(T)parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} and parallel to p(r(0)T(-1))parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} for all polynomials p. Then there exists a nontrivial common invariant subspace for T* and T*(-1).
Citation Formats
E. Bilen, “On some classes of semi-discrete darboux integrable equations,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.