Glow discharge detectors (GDDS) for millimeter-wave radiation detection and imaging

2018
Alasgarzade, Namig
Commercially available indicator lamps, also known as Glow Discharge Detectors (GDDs), are employed for the purpose of millimeter wave radiation detection and imaging. Previous studies show that dominant radiation detection mechanism for GDDs is enhanced cascade ionization. The current-voltage characteristics of GDDs are obtained and working mode is found as abnormal glow mode. The plasma parameters such as electron temperature and gas composition inside GDDs are studied using Optical Emission Spectroscopy method. In order to employ a GDD as a pixel detector, a read-out electronics with an amplifier circuit is developed. This circuit is used to measure the changes in current of the plasma discharge. The detection performance of two different GDDs, namely N520A and N523, are tested at 82 GHz and 100 GHz radiation frequencies. The response of GDDs is found highly sensitive to the discharge current and polarization of the incident millimeter wave radiation. A continuous-wave imaging system is constructed using the GDD as a detector. The images are obtained at 82 GHz, 100 GHz and 119 GHz radiation frequencies.

Suggestions

THz transmission and detection through glow discharge detectors
Cinar, K.; Altan, Hakan; Sahin, A. B. (2013-04-30)
The capability of low cost glow discharge detectors (GDDs) to detect terahertz (THz) radiation has drawn much attention recently. In order to employ them in applications such as THz imaging these studies have typically focused on the response of the GDD at specific frequencies. To better understand the spectral behavior of glow discharges, we have not only examined the response of the GDD at a specific frequency of 118 GHz, but also we examined the interaction mechanism of GDDs with THz radiation using tera...
Interaction of a Narrow Gap Glow Discharge Plasma with Far Infrared Radiation
Alasgarzade, N.; Takan, Taylan; Mansuroglu, D.; ŞAHİN, ASAF BEHZAT; Uzun Kaymak, İlker Ümit; Altan, Hakan (2016-09-30)
Commercially available neon indicator lamps (also known as Glow Discharge Detectors) are low-cost, sensitive detectors operating at room temperature for mm-wave/Terahertz detection. Furthermore, their high speed operation make them attractive from the stand-point of applications in the far-infrared region of the spectrum, however questions still remain regarding the mechanisms involved in the detection of this type of radiation. In order to study the plasmas generated in these lamps, a DC gas discharge cham...
Parallel 1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) Simulation of a Glow Discharge Millimeter Wave Detector
Kuşoğlu Sarıkaya, Cemre; Akbar, Demiral; Altan, Hakan (2018-01-15)
Glow discharge detectors can be a good alternative to existing Schottky diodes, Golay cells and pyroelectric detectors because they are inexpensive and can detect mm-wave and sub-mm radiation successfully. This detection occurs as a result of the interaction of the radiation with the electrons in the plasma. It is required to understand this interaction mechanism to obtain optimum detection parameters. Previous methods have focused on understanding the interaction using analytical models, where the radiatio...
Erbium doped silicon photonic crystals for light sources and amplifiers
Vuckovic, Jelena; Makarova, Maria; Gong, Yiyang; Yerci, Selçuk; Li, Rui; Negro, Luca Dal (null; 2009-01-01)
We demonstrated enhancement of light emission from Er-doped silicon photonic crystal cavities, as well as cavity linewidth narrowing with increasing optical pump power at low temperature-an indication of differential gain in the system.
Spectroscopic study and numerical simulation of low-pressure radio-frequency capacitive discharge with argon downstream
Tanisli, Murat; Rafatov, İsmail; Sahin, Neslihan; Mertadam, Sercan; Demir, Suleyman (Canadian Science Publishing, 2017-02-01)
In this study, the characteristic properties and plasma parameters of capacitive radio frequency (RF) argon (Ar) discharge and supplementary discharge at low pressure are investigated with optical emission spectroscopy (OES). The wavelengths of spectral lines from OES are obtained between 650-900 nm. Using OES lines and related experimental data, the electron temperatures for different RF power, flow, and measurement periods are determined. Eventually, the properties of plasma including the electron tempera...
Citation Formats
N. Alasgarzade, “Glow discharge detectors (GDDS) for millimeter-wave radiation detection and imaging,” M.S. - Master of Science, Middle East Technical University, 2018.