Assessment of plastic zone thickness and convergences for tunnels excavated in weak to fair quality rocks in Turkey

Satıcı, Özgür
Most of the ancient civilization structures were constructed under the ground, such as underground dwellings, transportation systems or storage facilities. In our modern era, underground constructions are still keeping their importance. Yet, every underground excavation requires prediction of rock mass behavior prior to excavation. Besides, this also means the prediction of convergences and plastic zone thicknesses after an excavation. In this thesis, development of convergences and plastic zone thickness during tunnel excavations were evaluated especially for weak to fair quality rock masses using actual field measurements, statistical and numerical analyses. Plastic zone thicknesses in relation with tunnel convergences were also identified. Decision tree method was selected as the best convergence estimation method, which is first in this kind and convenient for the determination of the relation between one dependent variable and multiple independent variables where there is not any linear relation within. As a result, a useful and user friendly convergence estimation model was generated. Moreover, the relation of convergences with plastic zone thickness was also revealed by the help of empirical equations, by using finite element analysis. Moreover, a new empirical equation was also identified for the prediction of tunnel wall closures. This equation is proved to be working well in the specified similar tunnel sections especially if three or more tunnel wall convergences are known and can be used for the estimation of unmeasured convergences for that section.


Assessment of damage zone thickness and wall convergence for tunnels excavated in strain-softening rock masses
Satici, Ozguer; Topal, Tamer (2021-02-01)
There are two fundamental issues in all underground excavations, which are safety and economy. To ensure safety and expedite excavations, level of tunnel wall convergences and damage zone thickness should be predicted before the excavation starts, should be determined accurately, and monitored during the excavation by the tunnel designer. However, accurate prediction of these two parameters is difficult unless in-situ stress and deformation measurement tools are used. In this study, damage zone thickness an...
Analysis of seismic behavior of underground structures: a case study on Bolu tunnels
Ertuğrul, Niyazi; Bakır, Bahadır Sadık; Department of Civil Engineering (2010)
In today’s world, buried structures are used for a variety of purposes in many areas such as transportation, underground depot areas, metro stations and water transportation. The serviceability of these structures is crucial in many cases following an earthquake; that is, the earthquake should not impose such damage leading to the loss of serviceability of the structure. The seismic design methodology utilized for these structures differs in many ways from the above ground structures. The most commonly util...
Performance of perforated breakwaters constructed with geotextile tubes
Yalçıner, Ahmet Cevdet; Ergin, Ayşen (2006-12-01)
The coastal defense structures are constructed by various types of structural systems varying from traditional rubble mound types and concrete systems to more innovative systems. In recent applications the geotextile is used in some applications of coastal engineering a such as coastal erosion control or perforated breakwaters. The tubular concrete units can be prepared at site by using geotextile as formwork and construct a perforated structure by placing the tubes in a specified angle and spacing. The per...
Comparison Of Structural Responses for a Base Isolated Building Under Real and Simulated Records
Ozsarac, Volkan; Karim Zadeh Naghshineh, Shaghayegh; Askan, Ayşegül (null; 2019-06-01)
In recent decades, base isolation systems for buildings are commonly used as retrofitting strategy in earthquake-prone areas. Evaluation of structural responses for base-isolated systems subjected to severe earthquakes is challenging since some regions have scattered ground motion dataset. Simulated ground motions can be an alternative to overcome this issue. There are several ground motion simulation methods available that provide varying levels of goodness fit between observed and synthetic data; therefor...
Metaheuristic based backcalculation of rock mass parameters around tunnels
Gedik, Görkem; Pekcan, Onur; Department of Civil Engineering (2018)
Due to uncertainities in the ground conditions and the complexity of soil-structure interactions, the determination of accurate ground parameters, which are not only used in tunnel construction but in the design of all underground structures, have a great significance in having structures that are cost-efficient. Backcalculation methods which rely not only on laborotory and field tests but also on field monitoring and field data provide real structure conditions and therefore it is gaining popularity in geo...
Citation Formats
Ö. Satıcı, “Assessment of plastic zone thickness and convergences for tunnels excavated in weak to fair quality rocks in Turkey,” Ph.D. - Doctoral Program, Middle East Technical University, 2018.