Polynomial trajectory shaping guidance algorithm for multi-missile salvo attack

Bingöl Taştankaya, Neşe Başak
In this thesis, a guidance algorithm is proposed which aims to control impact time via polynomial shaping of the missile trajectory and missile flight path angle. The main motivation of the trajectory design, which is convenient for impact time control, is its application to multiple missile engagement situations. In the first part of the study, a planar engagement geometry is considered. The trajectory of the missile is defined as a third order polynomial function of downrange. The coefficients of the polynomial function are obtained by solving a set of parametric equations to control impact time and impact angle. The guidance command required for the missile to follow the designed trajectory is defined as the acceleration command applied in the direction that is normal to the missile velocity vector. Nonlinear equations of motion in planar geometry are used to obtain the acceleration command. vi By defining the missile flight path angle in terms of polynomial function coefficients, the acceleration command is derived analytically. In the existence of disturbance effects during flight, the use of this acceleration command will cause the missile to deviate from the reference trajectory. For this reason, in order to obtain the guidance commands in feedback form, a virtual target approach is proposed. After the trajectory design is completed, it has been studied on the application of the proposed guidance method in 3D space. A maneuver-plane approach is used for the application of the trajectory defined in the planar geometry to 3D space. A reference frame is defined so that its


Trajectory optimization of a tactical missile by using genetic algorithm
Özdil, Baran Dilan; Kutay, Ali Türker; Department of Aerospace Engineering (2018)
In this thesis, estimation of an optimal trajectory for a tactical missile is studied. Missile guidance algorithm is developed to achieve a desired mission goal according to some performance criteria and the imposed constraints. Guidance algorithms may include trajectory optimization to shape the whole trajectory in an optimal way, so that the desired performance needs such as maximum impact velocity, minimum time-of-flight or specific crossing angles can be satisfied. By performing missile path planning, a...
Fuzzy logic guidance system design for guided missiles
Vural, A. Özgür; Özgören, Mustafa Kemal; Merttopçuoğlu, Osman; Department of Mechanical Engineering (2003)
This thesis involves modeling, guidance, control, and flight simulations of a canard controlled guided missile. The autopilot is designed by a pole placement technique. Designed autopilot is used with the guidance systems considered in the thesis. Five different guidance methods are applied in the thesis, one of which is the famous proportional navigation guidance. The other four guidance methods are different fuzzy logic guidance systems designed considering different types of guidance inputs. Simulations ...
Numerical investigation of characteristics of pitch and roll damping coefficients for missile models
Kayabaşı, İskander; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2012)
In this thesis the characteristics of pitch and roll damping coefficients of missile models are investigated by using Computational Fluid Dynamics (CFD) techniques. Experimental data of NACA0012 airfoil, Basic Finner (BF) and Modified Basic Finner (MBF) models are used for validation and verification studies. Numerical computations are performed from subsonic to supersonic flow regimes. Grid refinement and turbulence model selection studies are conducted before starting the dynamic motion simulations. Numer...
Missile autopilot design by projective control theory
Doruk, Reşat Özgür; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2003)
In this thesis, autopilots are developed for missiles with moderate dynamics and stationary targets. The aim is to use the designs in real applications. Since the real missile model is nonlinear, a linearization process is required to get use of systematic linear controller design techniques. In the scope of this thesis, the linear quadratic full state feedback approach is applied for developing missile autopilots. However, the limitations of measurement systems on the missiles restrict the availability of ...
Adaptive control of guided missiles
Tiryaki Kutluay, Kadriye; Yavrucuk, İlkay; Department of Aerospace Engineering (2011)
This thesis presents applications and an analysis of various adaptive control augmentation schemes to various baseline flight control systems of an air to ground guided missile. The missile model used in this research has aerodynamic control surfaces on its tail section. The missile is desired to make skid to turn maneuvers by following acceleration commands in the pitch and yaw axis, and by keeping zero roll attitude. First, a linear quadratic regulator baseline autopilot is designed for the control of the...
Citation Formats
N. B. Bingöl Taştankaya, “Polynomial trajectory shaping guidance algorithm for multi-missile salvo attack,” M.S. - Master of Science, Middle East Technical University, 2018.