Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A microfluidic system for dielectrophoretic characterization of cancer cells
Download
index.pdf
Date
2018
Author
Sel, Kaan
Metadata
Show full item record
Item Usage Stats
268
views
126
downloads
Cite This
Dielectrophoresis (DEP) is a promising cell manipulation approach for early diagnosis of cancer, which significantly increases chances of successful treatment. Compared to other cell manipulation techniques that rely on surface antigens, DEP systems enable label-free, cost-effective, simply-implementable cell characterization and separation. However, separation efficiency of the DEP based systems is limited and still far from meeting the medical requirements for early cancer detection. In order to improve the throughput of current DEP systems, it is important to obtain the optimum operating conditions. The main objective of this thesis is to conduct accurate dielectrophoretic characterization of cancer cells without ascertaining cell dielectric properties at different operating conditions in autonomous fashion. The presented system integrates a microfluidic DEP device with a CMOS image sensor, and a portable signal generator. The system enables DEP spectra analysis of cells in a wide frequency band (30 kHz to 50 MHz). The microfluidic DEP device, contains optimized electrode structures that can generate isomotive electric-field inside the analysis region. Hence, cell motion under the DEP force can directly be related to its dielectrophoretic behaviour. In addition, post-processing can be done either in a custom-developed MATLAB GUI or in a custom-developed Android software connected to a smartphone using an automated cell tracking algorithm. With the DEP characterization device presented in this thesis, different conditions (operating frequency, medium characteristics) can be tested in a portable, autonomous and rigorous fashion to find the optimum case for cell separation. The system was tested with both MFC-7 (Human Breast Adenocarcinoma) and K562 (Human Chronic Myeloid Leukemia) cells due to availability. The results display consistency with the DEP spectrum studies conducted with these two cell groups in the literature.
Subject Keywords
Dielectrophoresis.
,
Electric fields.
,
BioMEMS.
,
Cancer .
URI
http://etd.lib.metu.edu.tr/upload/12622389/index.pdf
https://hdl.handle.net/11511/27403
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Synthesis of poly (dl-lactic-co-glycolic acid) coated magnetic nanoparticles for anti-cancer drug delivery
Tansık, Gülistan; Gündüz, Ufuk; Department of Biology (2012)
One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an extern...
INVESTIGATION OF CLONAL EVOLUTION IN CAPECITABINE RESISTANT CACO-2 AND IRINOTECAN RESISTANT HT-29 CELL LINES BY USING CELLULAR BARCODING TECHNOLOGY
Danışık, Nurseda; Acar, Ahmet; Özen, Can; Department of Biotechnology (2022-10-31)
The development of drug resistance in tumor cells is one of the biggest problems currently in the clinic. As the pace of drug discovery slows and each new drug becomes increasingly expensive to bring to market, it is becoming clearer that better model systems and an understanding of drug resistance mechanisms are needed for second-line therapies. The overall aim of this project is to investigate the clonal evolution and drug resistance in colorectal cancer cell lines Caco-2 and HT-29 by using cellular barco...
Multiscale tumor modeling
Ünsal, Serbülent; Acar, Aybar Can; Department of Health Informatics (2014)
Cancer’s complex behavior decreases success rates of the cancer therapies. The usual steps cancer therapy are, deciding phase of the cancer and planing the therapy according to medical guidelines and there is no room or chance for personalized medicine. Simulation systems that use patient specific data as input and up-to-date scientific evidence as business rules has chance to help clinicians for evidence based personalized medicine practice.In this study our aim is creating a basic model to guide researche...
Alternative Polyadenylation patterns for novel gene discovery and classification in cancer
Beğik, Oğuzhan; Öyken, Merve; Can, Tolga; Erson Bensan, Ayşe Elif (2017-06-03)
Certain aspects of diagnosis, prognosis and treatment of cancer patients are still important challenges to be addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we analyzed expression data for 1,045 cancer patients and found a significant shift in usage of poly(A) signals in cancers. Using machine-learning techniques, we further def...
Alternative Polyadenylation Patterns for Novel Gene Discovery and Classification in Cancer
BEGIK, Oguzhan; ÖYKEN, MERVE; ALICAN, Tuna Cinkilli; Can, Tolga; Erson Bensan, Ayşe Elif (2017-07-01)
Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we analyzed expression data for 1045 cancer patients and found a significant shift in usage of poly(A) signals in common tumor types (breast, colon, lung, prostate, gastric...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Sel, “A microfluidic system for dielectrophoretic characterization of cancer cells,” M.S. - Master of Science, Middle East Technical University, 2018.