Explicit nonlinear analysis for quasi-static behavior of frame structures with pid control and mass scaling

Download
2018
Kocamaz, Korhan
Performance-based seismic design of reinforced concrete frame systems requires time history analysis of the structural model under earthquake loads and estimation of damage in the members. Time history analysis of these structures is usually performed using implicit time integration methods. For the implicit integration methods, divergence of the solution is typically treated as the onset of collapse of modelled system. In this study, a nonlinear analysis platform that enables the analysis of the effect of earthquake loads and estimation of damage by using explicit time integration was developed. In the time history analysis, mass scaling is utilized to increase the stable time step size without changing the overall dynamics. Explicit time integration methods are convenient for dynamic analysis and the determination of the collapse behavior. However, for quasi-static loading as well as relatively faster pseudo-dynamic experiments, dynamic effects should be minimized for a fast solution with analysis time comparable to implicit solutions. For this purpose, a control algorithm was implemented that mimics load control in displacementcontrolled experiments. The method is tested with an experiment as well as a recently conducted pseudo-dynamic experiment.

Suggestions

Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings
Günel, Ahmet Orhun; Burak Bakır, Burcu; Department of Civil Engineering (2013)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are ...
Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link
Durucan, Cengizhan; Dicleli, Murat (2010-10-01)
This paper is focused on a proposed seismic retrofitting system (PRS) configured to upgrade the performance of seismically vulnerable reinforced concrete (RC) buildings. The PRS is composed of a rectangular steel housing frame with chevron braces and a yielding shear link connected between the braces and the frame. The retrofitting system is installed within the bays of an RC building frame to enhance the stiffness, strength and ductility of the structure. The PRS and a conventional retrofitting system usin...
Energy based evaluation of RC frame structures
Azizi, Mahyar; Erberik, Murat Altuğ; Department of Civil Engineering (2019)
Nowadays, earthquake and structural engineers perceive that conventional seismic design method, which is based on force and strength, is not an adequate way of designing structures under ground motions. The reason is that the conventional seismic design method does not pay enough attention to inelastic displacements, plastic behavior of structures and duration of seismic motion. At the present time, there are new and popular alternatives to the force-based approach like displacement-based method, in which t...
Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Citation Formats
K. Kocamaz, “Explicit nonlinear analysis for quasi-static behavior of frame structures with pid control and mass scaling,” M.S. - Master of Science, Middle East Technical University, 2018.