Power factor enhancement of thermoelectric oxide composites for high temperature applications

Download
2018
Yurdakul, Emre Burak
In this work, we report a simultaneous increase in Seebeck coefficient and electrical conductivity, that results in increasing power factor, of Ca3Co4O9 (C-349) ceramic by forming a composite system together with another promising oxyselenide; BiCuSeO (BCSO). Pristine C-349 and BCSO were synthesized using sol-gel and solid-state reaction methods, respectively and mixed by several ball-milling steps. We observed a remarkable increase in the power factor of, approximately 41% higher than the power factor of pristine C-349 at 900 K. The addition of BCSO phase results in slight decrease in carrier concentration and at the same time creates more porous structure. Both consequences have a positive impact on Seebeck coefficient. The reason for enhancement in electrical conductivity is related with high increase in hole mobility without significant decrease in carrier concentration. This study might inspire other researchers to explore the new concepts of developing high power factor thermoelectric (TE) materials. To our best knowledge, this is the first study on the TE properties of C-349/BCSO composites.

Suggestions

Synthesis and thermoelectric characterization of Ca3Co4O9 particles
Ertuğrul, Hediye Merve; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2018)
Thermoelectric materials can convert waste heat to electrical energy as well as thermal energy to electrical energy. Thermoelectric technology can aid to solve the energy problem which causes global environmental problems as an alternative energy source and provide long-lasting power sources which can be used for space missions. Ca3Co4O9 is environment friendly, nontoxic, humidity resistant at high temperatures, oxidation resistant, abundant, chemically and thermally stable in air and light. Also, this mate...
Structural characterization of intrinsic a-Si:H thin films for silicon heterojunction solar cells
Pehlivan, O.; Yilmaz, O.; Kodolbas, A. O.; Duygulu, O.; Tomak, Mehmet (2013-01-01)
We have utilized ex-situ spectroscopic ellipsometry and HRTEM to characterize the optical and structural properties of intrinsic a-Si:H thin layer that plays a key role for the improvement of the open circuit voltage in silicon heterojunction solar cells. Intrinsic a-Si:H films were deposited on (100) p-type CZ silicon wafers by using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique at 225 degrees C substrate temperature and deposition time ranges from 15 s to 1800 s. Observed changes in the imag...
Isovector response of nuclear matter at finite temperature
Ayik, S.; BOZKURT, Kutsal; Gokalp, A.; Yılmaz Tüzün, Özgül (2008-06-01)
The dipole response function of nuclear matter at zero and finite temperatures is investigated in an extended RPA approach by including collisional damping mechanism and coherent damping due to particle-phonon coupling. Calculations are carried out for nuclear dipole vibrations by employing the Steinwedel-Jensen model and compared with experimental results for Sn-120 and Pb-208.
Thermal degradation of polythiophene-natural rubber and polythiophene-synthetic rubber conducting polymer composites
Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
Thermal degradation of conducting polymer composites of polythiophene and rubbers was studied by direct and indirect pyrolysis mass spectrometry techniques. The samples were prepared by electrooxidation of polythiophene using natural rubber or synthetic rubber as the insulating matrix. Presence of decomposition products which were not observed during pyrolysis of pure polythiophene and rubbers, and disappearance of rubber-based pyrolysis mass peaks, together with changes in thermal stability and behaviour, ...
Current-voltage and capacitance-voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode
OCAK, YUSUF SELİM; Kulakci, M.; KILIÇOĞLU, TAHSİN; Turan, Raşit; AKKILIÇ, KEMAL (2009-08-01)
Electrical and interfacial properties of Sn/Methylene Blue (MB)/p-Si Schottky diode have been determined by using current-voltage (I-V) and capacitance-voltage (C-V) measurements of the device at room temperature. Cheung functions and modified Norde functions have been used to obtain the electrical characteristics such as barrier height and series resistance of the diode. It has been seen that the MB layer modifies the effective barrier height of the structure because the layer creates the physical barrier ...
Citation Formats
E. B. Yurdakul, “Power factor enhancement of thermoelectric oxide composites for high temperature applications,” M.S. - Master of Science, Middle East Technical University, 2018.