Random effects’ distribution assumption on joint mixed modelling

Özdemir, Celal Oğuz
Joint mixed model is an appealing approach in medical research where it is critical to estimate the odds of a fatal complication that occurs to a patient given the covariate profile such as a risk factor observed over time. For this kind of estimation, joint mixed model is used. In the standard Bayesian analysis of the model, the error variance and random effects’ variance-covariance matrix are apriori modeled independently with Inverse-Gamma and Inverse-Wishart distributions respectively. Recently however, it is shown that joint apriori modeling via Generalized Multivariate Log-Gamma (G-MVLG) distribution is more efficient than the standard Bayesian analysis for these variance components. Our current aim is to inverstigate the robustness of G-MVLG based and standard analysis to random effects’ distributions. Bivariate Gamma, Bivariate Skew-Normal, Normal distribution and their mixture distributions were considered for the true distribution of random effects. Results show that the G-MVLG approach is robust to the underlying true distribution of random effects when the sample size is sufficiently large. For small samples, a robust approach. Simulations and real data study show that DPP for the random effects distributions is less biased and more efficient.


Explicit Evidence for Prognostic Bayesian Network Models
Yet, Barbaros; Tai, Nigel; Marsh, William (2014-01-01)
Many prognostic models are not adopted in clinical practice regardless of their reported accuracy. Doubts about the basis of the model is considered to be a major reason for this as the evidence behind clinical models is often not clear to anyone other than their developers. We propose a framework for representing the evidence behind Bayesian networks (BN) developed for prognostic decision support. The aim of this evidence framework is to be able to present all the evidence alongside the BN itself. We illus...
Modeling diseases with multiple disease characteristics: comparison of models and estimation methods
Erdem, Münire Tuğba; Kalaylıoğlu Akyıldız, Zeynep Işıl; Department of Statistics (2011)
Epidemiological data with disease characteristic information can be modelled in several ways. One way is taking each disease characteristic as a response and constructing binary or polytomous logistic regression model. Second way is using a new response which consists of disease subtypes created by cross-classification of disease characteristic levels, and then constructing polytomous logistic regression model. The former may be disadvantageous since any possible covariation between disease characteristics ...
Forward problem solution for electrical conductivity imaging via contactless measurements
Gençer, Nevzat Güneri (IOP Publishing, 1999-04-01)
The forward problem of anew medical imaging system is analysed in this study. This system uses magnetic excitation to induce currents inside a conductive body and measures the magnetic fields of the induced currents. The forward problem, that is determining induced currents in the conductive body and their magnetic fields, is formulated. For a general solution of the forward problem, the finite element method (FEM) is employed to evaluate the scalar potential distribution. Thus, inhomogeneity and anisotropy...
Bivariate random effects and hierarchical meta-analysis of summary receiver operating characteristic curve on fine needle aspiration cytology
Erte, İdil; Baykal, Nazife; Akçil, Mehtap; Department of Medical Informatics (2011)
In this study, meta-analysis of diagnostic tests, Summary Receiver Operating Characteristic (SROC) curve, bivariate random effects and Hierarchical Summary Receiver Operating Characteristic (HSROC) curve theories have been discussed and accuracy in literature of Fine Needle Aspiration (FNA) biopsy that is used in the diagnosis of masses in breast cancer (malignant or benign) has been analyzed. FNA Cytological (FNAC) examination in breast tumor is, easy, effective, effortless, and does not require special tr...
Decision support system for Warfarin therapy management using Bayesian networks
Yet, Barbaros; Raharjo, Hendry; Lifvergren, Svante; Marsh, William; Bergman, Bo (2013-05-01)
Warfarin therapy is known as a complex process because of the variation in the patients' response. Failure to deal with such variation may lead to death as a result of thrombosis or bleeding. The possible sources of variation such as concomitant illnesses and drug interactions have to be investigated by the clinician in order to deal with the variation. This paper describes a decision support system (DSS) using Bayesian networks for assisting clinicians to make better decisions in Warfarin therapy managemen...
Citation Formats
C. O. Özdemir, “Random effects’ distribution assumption on joint mixed modelling,” M.S. - Master of Science, Middle East Technical University, 2018.