Effect of synthesis parameters on structural properties and thermal behavior of Sol-Gel synthesized iron oxide Xerogels

Download
2018
Dinçer Yılmaz, Nil Ezgi
Currently used igniter system compositions are mostly based on the pyrotechnic blends of fuels and oxidizers. In this study, nanostructured metallic xerogels were synthesized by sol-gel method by using various types of proton scavengers and these metallic xerogels were used as oxidizers. In the experiments, Fe(NO3)3·9H2O was used as a precursor and a wide range of proton scavengers (propylene oxide, 1,2 epoxybutane, tetrahydrofuran, tetrahydropyran, 1,4 dioxane and ammonium hydroxide ) were used to start the gelation mechanisms. In order to dry the gels and to obtain xerogel structures, the room temperature drying method was utilized which was followed by low temperature direct drying method. Further, to figure out the effect of drying conditions, sequential solvent exchange (SSE) was applied to obtain xerogel structures. The energetic compositions were prepared by mixing nanostructured Fe2O3 xerogel samples with metal/fuel powders. The fuels used in these energetic compositions were commercially available boron, aluminum, magnesium and 20% magnesium coated boron. The energetic properties of metal/fuel-Fe2O3 composites were determined and the effect vi of proton scavengers, drying conditions, equivalence ratio on the textural properties and thermal behavior of the thermite mixtures were examined. The results showed that the iron oxide xerogels dried with SSE process have exhibited intrinsic properties of aerogels with high surface area, larger than 300 m2/g, mesoporous structure with a size range of 3-4 nm and nano-scale particle sizes with 3-4.nm. It was observed that the surface area of xerogels was strongly dependent on the type of proton scavenger used. The heat output values of the fuel/iron oxide nano thermites were determined from 85 to 3285 J/g depending on the fuel-oxidant ratio, proton scavenger, drying conditions and fuel type based on DSC/TG analysis. It was shown that the type of proton scavenger, drying conditions and fuel-oxidant ratio could be used to modify the combustion performance, thermal behavior and the structural properties of nanothermites and the particle size distribution, surface area and crystallinity of the xerogels synthesized with the sol-gel synthetic route. The structural and morphological properties of the samples were characterized by XRD, FTIR, elemental analysis and SEM. The surface area and particle size distribution of the samples were determined by BET method. The thermal behavior and combustion characteristics were characterized by using TG-DSC Instrument and Parr Bomb Calorimetry. The impact and friction sensitivity of the energetic nanocomposites were evaluated by BAM Impact and Friction Tester.

Suggestions

Effect of proton scavengers on the textural properties and performance of Fe2O3 xerogels for boron containing pyrotechnics
Yilmaz, Nil E. Dinçer; Karakaş, Gürkan (2017-01-01)
Currently used rockets and missile igniter systems are mostly based on the pyrotechnic blends of fuels and oxidizers. In this study nano-sized boron was used as fuel because of its high heat of combustion, low atomic weight and high energy density. Iron oxide was used as an oxidizer and synthesized by sol-gel method by using various types of proton scavengers. In the experiments Fe(NO3)3·9H2O was used as a precursor and a wide range of proton scavengers (propylene oxide, 1,2 epoxybutane, tetrahydrofuran, te...
Effects of synthesis, doping methods and metal content on thermoluminescence glow curves of lithium tetraborate
Kayhan, Mehmet; Yılmaz, Ayşen (Elsevier BV, 2011-07-28)
Lithium tetraborate: Li(2)B(4)O(7), (LTB) has been synthesized and doped with various Mn content by different methods, such as, high temperature solid state synthesis and solution assisted synthesis methods. Powder XRD results proved the formation of solid-solution by replacing Mn with Li ions in LTB lattice at lower amount of Mn doping, for example 0.1-3.0% Mn doping. In this research TL glow curves of Mn doped lithium tetraborate (LTB: Mn) produced by using different synthesis and doping methods and the e...
Effect of Ambient Conditions on Monthly Performances of Three Different PV Arrays
ÖZDEN, TALAT; Akınoğlu, Bülent Gültekin; Turan, Raşit (2016-10-14)
Solar PV cells may be mainly divided into two parts as crystalline and thin film. Mono-crystalline silicon (MonoSi), microcrystalline based amorphous silicon (a-Si/µc-Si) thin film and Cadmium Telluride (CdTe) thin film solar cells are widely used PV cells in the arrays. The outdoor performances of the systems depend on some climatic parameters and conditions, and it is important to understand how the monthly efficiencies vary with these parameters (Bhattacharya et al., 2014; Dubey et al., 2013; Skoplaki an...
Effect of High Temperature on Swellable Organically Modified Silica (SOMS) and Its Application for Preferential CO Oxidation in H-2 Rich Environment
Basu, Dishari; Ailawar, Saurabh; Çelik, Gökhan; Edmiston, Paul; Ozkan, Umit S. (Wiley, 2020-07-01)
Transition metal oxide catalysts tend to deactivate in the presence of moisture during hydrogen purification using preferential oxidation (PROX) of carbon monoxide (CO) . Thus, novel water-tolerant catalysts need to be developed. Herein, the evolution of heat treated swellable organically-modified silica (SOMS), a hydrophobic organic-inorganic hybrid material, has been characterized and applied as a catalyst support for PROX under moisture-rich conditions. While the SOMS-supported cobalt manganese oxide was...
Impact of composition modification induced by ion beam Coulomb-drag effects on the nanoindentation hardness of HT9
Gigax, Jonathan G.; Kim, Hyosim; Aydoğan Güngör, Eda; Price, L. M.; Wang, X.; Maloy, S. A.; Garner, F. A.; Shao, L. (Elsevier BV, 2019-04-01)
Accelerator-based ion irradiation is commonly used to simulate neutron damage, in lieu of neutron irradiation due to limited availability of fast flux facilities and little to no activation of the samples. Neutron atypical effects, however, must be recognized and their impact minimized in order to achieve the most accurate microstructural evolution under ion bombardment. Mechanical property changes, which arise from the synergy of numerous radiation-induced changes, are especially susceptible to these neutr...
Citation Formats
N. E. Dinçer Yılmaz, “Effect of synthesis parameters on structural properties and thermal behavior of Sol-Gel synthesized iron oxide Xerogels,” Ph.D. - Doctoral Program, Middle East Technical University, 2018.