Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling and application of artificial muscle actuators
Download
index.pdf
Date
2019
Author
Çamlıca, Fahri Buğra
Metadata
Show full item record
Item Usage Stats
382
views
261
downloads
Cite This
Electro Active Polymers (EAPs) are the group of polymeric materials which are also known as the Artificial Muscles that are already available commercially or can be manufactured in laboratory conditions. Artificial muscle actuators are considered as alternatives to conventional electric/pneumatic/hydraulic devices in certain applications which require lightweight actuators. Artificial muscle actuators are not yet capable of completing heavy duty missions, however these flexible actuators do not require additional mechanisms for actuation and their high efficiency outputs make them a strong alternative to conventional systems in future applications. This study is motivated by the potential of the materials known as artificial muscles in replacing the conventional actuators, particularly in aero structures where the weight and cost advantages are strongly emphasized. An exhaustive experimental study of the properties of a suitable representative material is carried out and the mathematical characterization of the material is performed. A model as a typical example of an aero structure in the form of a wing trailing edge is used to establish the capabilities and to ascertain the possibility of application in aero structures.
Subject Keywords
Actuators.
,
Polymers.
,
Dielectrics.
,
Elastomers.
URI
http://etd.lib.metu.edu.tr/upload/12623171/index.pdf
https://hdl.handle.net/11511/28092
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Synthesis of acrylic based high internal phase emulsion polymers and their application in chromatography
Tunç, Yeliz; Hasırcı, Nesrin; Department of Polymer Science and Technology (2009)
High internal phase emulsion polymers (PolyHIPEs) are new generation materials with their high porosity and interconnected open-cell structures and finds applications in areas such as supports for catalytic systems, separation media and tissue engineering scaffolds. Styrene based PolyHIPEs are currently the most popular choice, but solvent compatibility and poor mechanical properties of these materials prevent their applications. Therefore development of new polyHIPEs with desired mechanical and cellular pr...
Modification of Acrylic Bone Cements with Oxygen Plasma and Additives
Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2012-09-01)
Acrylic bone cements which are commonly used for the fixation of orthopedic prostheses, were prepared at different formulations, by using either ground poly(methyl methacrylate) (PMMA) particles or homogeneously synthesized PMMA microspheres with application of plasma and addition of various ingredients in order to improve mechanical and thermal properties. PMMA powders having three different particle size (ground and sieved particles with 0-50 mu m (BC1 group, average particle size: 21 mu m) and 50-150 mu ...
Investigation of bismuth doped bioglass/graphene oxide nanocomposites for bone tissue engineering
Pazarçeviren, Ahmet Engin; Tezcaner, Ayşen; Keskin, Dilek; Evis, Zafer (2018-03-01)
In this study, bismuth doped 45S5 nanobioactive bioglass (nBG) and graphene oxide (GO) nanocomposites were developed and characterized in terms of microstructural, mechanical, bioactivity and biological properties. Bismuth (Bi) - doped nBG was synthesized by sol-gel method and sintered at 600 degrees C for 2 h. Nanosized GO was homogeneously mixed with Bi doped bioglass at various ratios to prepare nanocomposites. Addition of Bi increased the density of nBG samples while a considerable decrease in density w...
Composition-property relationship of PCL based Polyurethanes
Güney, Aysun; Hasırcı, Nesrin; Department of Polymer Science and Technology (2012)
The desirable properties of polyurethanes (PUs) such as mechanical flexibility associated with chemical versatility make these polymers attractive in the development of biomedical devices. In this study, various segmented polyurethanes were synthesized through polymerization reactions between polycaprolactone (PCL) diol or triol and excess hexamethylene diisocyanate (HDI) with varying NCO/OH ratios and the effect of composition on the properties of the resultant polyurethane films were examined. Initially, ...
Theoretical aspects of Si-60 structure having endohedral beryllium species, Be and Be+2
Türker, Burhan Lemi (2001-07-30)
Endohedrally Be and Be+2 doped Si-60 structures, Be@Si-60 and Be+2C@Si-60 are considered for AM1 type semiempirical molecular orbital treatment at the restricted Hartree-Fock level. The highly endothermic but stable structures are expected as the result of the calculations. Some donor-acceptor type electronic interaction between the dopants, Be and Be+2, and Si-60 cage occurs, causing some geometry distortions leading to high dipole moments as well as affecting the molecular orbitals
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. B. Çamlıca, “Modeling and application of artificial muscle actuators,” Ph.D. - Doctoral Program, Middle East Technical University, 2019.