Numerical modeling of discontinuous rock slopes utilizing the 3DDGM (three-dimensional discontinuity geometrical modeling) method

2016-5-5
Azarafza, Mohammad
Asghari-Kaljahi, Ebrahim
Akgün, Haluk
The geometry of discontinuities in a rock mass is one of the most important influences on the behavior and characteristics of that rock mass. The geometry of discontinuities largely determines the stability of the rock mass, as well as appropriate methods for reinforcing and stabilizing that mass. This study introduces the 3DDGM (three-dimensional discontinuity geometrical modeling) method, which is based on the 3DGM (three-dimensional geometrical modeling) algorithm that was developed using the Mathematica software package. The 3DDGM method provides essential input data for the stability analysis of a discontinuous rock mass using block stability assessment techniques or block modeling codes. The 3DDGM method developed in the present work was designed to model discontinuities in rock masses and to provide accurate values for discontinuity parameters (i.e., location, spacing, separation, system, orientation, etc.). This algorithm was developed to increase the accuracy of the discontinuity model based on the Heliot algorithm. The 3DDGM algorithm was tested by applying it to a real case, the sloping discontinuous rock mass at the phase 7 gas flare site in the South Pars Gas Complex in Assalouyeh, Iran, and the algorithm was successful in providing a three-dimensional model of the discontinuities in the rock mass at the site.
Bulletin of Engineering Geology and the Environment

Suggestions

Laboratory investigation of shear behavior of rock discontinuities based on shear rate, size and roughness characteristics
İşleyen, Ergin; Düzgün, H. Şebnem; Department of Mining Engineering (2017)
Rock mass characteristics are significantly influenced by the presence of discontinuities. In order to develop safe rock engineering designs, factors affecting shear behavior of rock discontinuities should be carefully analyzed. In this study, effects of shear rate, sample size, roughness characteristics and co-dependency of these effects are investigated on rock discontinuity sample replicas. 3D models of the rock discontinuities are generated with close-range digital photogrammetry. Then, discontinuity mo...
Stochastic geometry model of rock mass fracture network in tunnels
Azarafza, Mohammad; Akgün, Haluk; Asghari-Kaljahi, Ebrahim (Geological Society of London, 2018-08-01)
Geometric distributions of fractures or discontinuities control the behaviour, and limit the strength and the stability of rock masses where the best stabilization and improvement method for that rock mass could be achieved based on favourable discontinuity geometry. This study introduces an algorithm named 'Stochastic Geometry Model of Fractures Network in Tunnels (SGMFNT)', which was developed with the MA THEMATICA software. The SGMFNT method provides a fractures geometric distribution database to aid dis...
Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran
AZARAFZA, Mohammad; Akgün, Haluk; ASGHARI-KALJAHI, Ebrahim (2017-10-01)
Slope mass rating (SMR) is commonly used for the geomechanical classification of rock masses in an attempt to evaluate the stability of slopes. SMR is calculated from the RMR89-basic (basic rock mass rating) and from the characteristic features of discontinuities, and may be applied to slope stability analysis as well as to slope support recommendations.
Portal slope stability assessment of a proposed highway tunnel in northeastern Turkey
Sopaci, E.; Akgün, Haluk (2009-01-01)
This paper presents an application of the rock mass classification systems, namely, Geomechanics Classification System (RMR), Geological Strength Index (GSI) and the newly adapted A-RMR for the characterization of the rock masses surrounding the portals of the Ordu Peripheral Highway Tunnel. In order to characterize the rock masses, which mainly consist of flysch (mostly alternation of sandstone, marl and siltstone) and pyroclastics (agglomerate and tuff), engineering geological investigations have been car...
Fuzzy Rock Mass Rating: Soft-Computing-Aided Preliminary Stability Analysis of Weak Rock Slopes
YARDIMCI, AHMET GÜNEŞ; Karpuz, Celal (2018-01-01)
Rock mass classification systems are the most commonly used empirical tools in preliminary design of rock slopes. In spite of numerous advantages, these systems lack the common drawbacks of classification systems originated from uncertainties. These drawbacks may lead to similar or so close quality scores for different rock mass properties. Fuzzy Sets is a rising trend in describing Geomechanical problems by including the expert opinion. Especially in the case of weak rocks it allows prediction of more real...
Citation Formats
M. Azarafza, E. Asghari-Kaljahi, and H. Akgün, “Numerical modeling of discontinuous rock slopes utilizing the 3DDGM (three-dimensional discontinuity geometrical modeling) method,” Bulletin of Engineering Geology and the Environment, pp. 989–1007, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28158.