Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mammalian Telomeric DNA Suppresses Endotoxin-induced Uveitis
Download
index.pdf
Date
2010-7-14
Author
Yagci, Fuat C.
Aslan, Ozlem
Gürsel, Mayda
Tincer, Gizem
Özdamar, Yasemin
Karatepe, Kutay
Akcali, K. Can
Gursel, Ihsan
Metadata
Show full item record
Item Usage Stats
159
views
113
downloads
Cite This
Telomeric regions of mammalian chromosomes contain suppressive TTAGGG motifs that inhibit several proinflammatory and Th1-biased immune responses. Synthetic oligodeoxynucleotides (ODN) expressing suppressive motifs can reproduce the down-regulatory activity of mammalian telomeric repeats and have proven effective in the prevention and treatment of several autoimmune and autoinflammatory diseases. Endotoxin-induced uveitis (EIU) is an established animal model of acute ocular inflammation induced by LPS administration. Augmented expression of proinflammatory cytokines/chemokines such as TNF alpha, IL-6, and MCP1 and bactericidal nitric oxide production mediated by LPS contribute to the development of EIU. Suppressing these mediators using agents that are devoid of undesirable systemic side effects may help prevent the development of EIU. This study demonstrates the selective down-regulatory role of suppressive ODN after (i) local or (ii) systemic treatment in EIU-induced rabbits and mice. Our results indicate that suppressive ODN down-regulate at both the transcript and protein levels of several proinflammatory cytokines and chemokines as well as nitric oxide and co-stimulatory surface marker molecules when administrated prior to, simultaneously with, or even after LPS challenge, thereby significantly reducing ocular inflammation in both rabbit and mouse eyes. These findings strongly suggest that suppressive ODN is a potent candidate for the prevention of uveitis and could be applied as a novel DNA-based immunoregulatory agent to control other autoimmune or autoinflammatory diseases.
Subject Keywords
İnduced immune activation
,
Cpg oligonucleotides
,
Bacterial-dna
,
Synthetic oligonucleotides
,
Ocular inflammation
,
İnduced arthritis
,
Gene-expression
,
Oligodeoxynucleotides
URI
https://hdl.handle.net/11511/28274
Journal
Journal of Biological Chemistry
DOI
https://doi.org/10.1074/jbc.m110.125948
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes.
Erikçi, E; Gürsel, Mayda; Gürsel, I (2011-02-01)
The immunogenicity of a vaccine formulation is closely related to the effective internalization by the innate immune cells that provide prolonged and simultaneous delivery of antigen and adjuvant to relevant antigen presenting cells. Endosome associated TLR9 recognizes microbial unmethylated CpG DNA. Clinical applications of TLR9 ligands are significantly hampered due to their pre-mature in vivo digestion and rapid clearance. Liposome encapsulation is a powerful tool to increase in vivo stability as well as...
CpG DNA: recognition by and activation of monocytes.
Klinman, DM; Takeshita, F; Gursel, I; Leifer, C; Ishii, KJ; Verthelyi, D; Gürsel, Mayda (2002-07-01)
Unmethylated CpG motifs present in bacterial DNA rapidly trigger an innate immune response characterized by the activation of Ig- and cytokine-secreting cells. Synthetic oligonucleotides (ODNs) containing CpG motifs mimic this activity, triggering monocytes to proliferate, secrete and/or differentiate. Analysis of hundreds of novel ODNs led to the identification of two structurally distinct classes of CpG motif that differentially activate human monocytes. ODNs of the "K"-type interact with Toll-like recept...
Differential activation of immune cells by commensal versus pathogen-derived bacterial RNA
Özcan, Mine; Gürsel, Mayda; Department of Biology (2014)
Immunological mechanisms contributing to distinguishing signals derived from commensal versus pathogenic bacteria is an active area of research and recent evidence suggests that commensal and pathogens may express different variants of pathogen associated molecular patterns (PAMP). In this thesis, we propose that as a major member of PAMP, bacterial RNAs derived from commensal and pathogens may have distinct immunostimulatory activities due to differentially recognition by the host immune system. In order t...
Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG
Yildiz, Soner; Alpdundar, Esin; Gungor, Bilgi; Kahraman, Tamer; Bayyurt, Banu; GÜRSEL, İHSAN; Gürsel, Mayda (2015-04-01)
Recognition of pathogen-derived nucleic acids by immune cells is critical for the activation of protective innate immune responses. Bacterial cyclic dinucleotides (CDNs) are small nucleic acids that are directly recognized by the cytosolic DNA sensor STING (stimulator of IFN genes), initiating a response characterized by proinflammatory cytokine and type I IFN production. Strategies to improve the immune stimulatory activities of CDNs can further their potential for clinical development. Here, we demonstrat...
CXXC5 as an unmethylated CpG dinucleotide binding protein contributes to estrogen-mediated cellular proliferation.
Ayaz, G; Razizadeh, N; Yaşar, P; Kars, G; Kahraman, Deniz Cansen; Saatci, Ö; Şahin, Ö; Çetin-Atalay, R; Muyan, M (2020-04-06)
Evidence suggests that the CXXC type zinc finger (ZF-CXXC) protein 5 (CXXC5) is a critical regulator/integrator of various signaling pathways that include the estrogen (E2)-estrogen receptor α (ERα). Due to its ZF-CXXC domain, CXXC5 is considered to be a member of the ZF-CXXC family, which binds to unmethylated CpG dinucleotides of DNA and through enzymatic activities for DNA methylation and/or chromatin modifications generates a chromatin state critical for gene expressions. Structural/functional features ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. C. Yagci et al., “Mammalian Telomeric DNA Suppresses Endotoxin-induced Uveitis,”
Journal of Biological Chemistry
, pp. 28806–28811, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28274.