Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrical impedance tomography using the magnetic field generated by injected currents
Date
1996-11-03
Author
Birgul, O
Ider, YZ
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
263
views
0
downloads
Cite This
In 2D EIT imaging, the internal distribution of the injected currents generate a magnetic field in the imaging region which can be measured by magnetic resonance imaging techniques. This magnetic field is perpendicular to the imaging region on the imaging region and it can be used in reconstructing the conductivity distribution inside the imaging region. For this purpose, internal current distribution is found using the finite element method. The magnetic fields due to this current is found using Biot-Savart law. Sensitivity of magnetic field distribution to inner conductivity perturbations for different current injection profiles is studied. it is found that, to achieve a uniform spatial resolution, a current profile which generates uniform current inside the imaging region is to be applied. The condition number of the sensitivity matrix obtained for this case is found to be very low. Several images are obtained using simulation data.
Subject Keywords
Impedance
,
Tomography
,
Magnetic fields
,
Magnetic field measurement
,
Magnetic resonance imaging
,
Conductivity
,
Current measurement
,
Current measurement
,
Current distribution
,
Finite element methods
URI
https://hdl.handle.net/11511/65115
Conference Name
18th Annual International Conference of IEEE Engineering-in-Medicine-amd-Biology-Society
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Eyüboğlu, Behçet Murat (2006-09-01)
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distr...
RF Coil Design for MRI Applications in Inhomogeneous Main Magnetic Fields
Yılmaz, Ayşen; Eyueboglu, B. M. (2006-09-01)
Conventional Magnetic Resonance Imaging (MRI) techniques require homogeneous main magnetic fields. However, MRI applications that are executed in inhomogenous main magnetic fields have been developed in recent years. In this study, RF coil geometries are designed for MRI applications in inhomogeneous magnetic fields. Method of moments is used to obtain the current density distribution on a predefined surface that can produce a desired magnetic field, which is perpendicular to the given inhomogenous main mag...
Magnetic Resonance Imaging in Inhomogeneous Magnetic Fields with Noisy Signal
Arpinar, V. E.; Eyüboğlu, Behçet Murat (2008-11-27)
In this study, an image reconstruction algorithm for a Magnetic Resonance Imaging (MRI) system with inhomogeneous magnetic fields is proposed. The proposed reconstruction algorithm uses spatial distributions of main magnetic field, Radio Frequency (RF) and gradient fields as inputs, together with the pulse sequence and the noisy Magnetic Resonance (MR) signal. To calculate the noise signal, noise model for MRI with homogeneous fields is extended for inhomogeneous magnetic fields. Using this embedded noise m...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging
Degirmenci, E.; Eyüboğlu, Behçet Murat (2008-11-27)
Magnetic Resonance Electrical Impedance Tomography (MREIT) brings high resolution imaging of true conductivity distribution to reality. MREIT images are reconstructed based on measurements of current density distribution and a surface potential value, induced by an externally applied current flow. Since biological tissues may be anisotropic, isotropic conductivity assumption, as it is adopted in most of MREIT reconstruction algorithms, introduces reconstruction inaccuracy. In this study, a novel algorithm i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Birgul and Y. Ider, “Electrical impedance tomography using the magnetic field generated by injected currents,” Amsterdam, Netherlands, 1996, vol. 18, p. 784, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65115.