Optimal posture control algorithm to improve the stability of redundant haptic devices

2013-5-9
Stability is indispensable to haptic interfaces for the simulation of a large variety of virtual environments. On a multi-degree of freedom (multi-DOF) haptic device, the passivity condition must be satisfied in both end-effector and joint space to achieve stable interaction. In this study, a conservative passivity condition is utilized for the stability such that guaranteeing the passivity at all joints is a sufficient condition for the passivity and then stability of the whole haptic system. An optimal posture control algorithm is developed to satisfy this passivity condition and maximize the stability performance of a redundant haptic device. The algorithm optimally adjusts the device postures, which are estimated by a Golden Section Search algorithm. The proposed control algorithm was experimentally implemented on a virtual sphere by using a 7-DOF redundant haptic device. Z-width stability metric was used to evaluate the performance of the proposed algorithm. The results show that the optimal posture control approach significantly improves the stability of the redundant haptic devices.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Suggestions

Transparency improvement in haptic devices with a torque compensator using motor current
Baser, Ozgur; Konukseven, Erhan İlhan; Gurocak, Hakan (2012-12-01)
Transparency of a haptic interface can be improved by minimizing the effects of inertia and friction through the use of model based compensators. However, the performance with these algorithms is limited due to the estimation errors in the system model and in the velocity and acceleration from quantized encoder data. This paper contributes a new torque compensator based on motor current to improve transparency. The proposed method was tested experimentally in time and frequency domains by means of an excita...
Hybrid control algorithm to improve both stable impedance range and transparency in haptic devices
Baser, Ozgur; Gurocak, Hakan; Konukseven, Erhan İlhan (2013-02-01)
An ideal haptic device should transmit a wide range of stable impedances with maximum transparency. When using active actuators, transparency improvement algorithms tend to decrease the range of attainable impedances. Passive actuators can transmit high impedances stably, but are not sufficient alone for transparency. In this study, a hybrid force control algorithm employing active and passive actuators was developed to improve the stable impedance range and transparency in haptic devices. A new transparenc...
Stability and transparency improvement in haptic device employing both MR-brake and active actuator
Baser, Ozgur; Konukseven, Erhan İlhan; Gurocak, Hakan (2012-12-14)
An ideal haptic device should transmit a wide range of stable virtual model impedances (Z-width) with high transparency. Magneto-rheological fluid (MR) brakes are advantageous in haptic devices since they are passive actuators. However, they cannot provide high transparency and smooth interaction due to high viscous friction, residual torque, slow response, sticking and hysteresis effects. On the other hand, active actuators cannot simulate high virtual impedances stably, but provide high transparency with ...
Utilization of motor current based torque feedback to improve the transparency of haptic interfaces
Baser, Ozgur; Konukseven, Erhan İlhan (2012-06-01)
In this paper motor current based torque feedback compensator is utilized in actuator space together with a closed loop impedance control algorithm instead of model based compensator to improve the transparency performance of haptic interfaces; moreover, a novel transparency evaluation metric is developed to evaluate the transparency performance of these devices. The proposed control algorithm is experimentally tested on a 1 DOF haptic device by employing a low-cost current sensor. It is also tested on a MA...
ADAPTIVE-CONTROL OF FLEXIBLE MULTILINK MANIPULATORS
BODUR, M; SEZER, ME (Informa UK Limited, 1993-09-01)
An adaptive self-tuning control scheme is developed for end-point position control of flexible manipulators. The proposed scheme has three characteristics. First, it is based on a dynamic model of a flexible manipulator described in cartesian coordinates, which eliminates the burden and inaccuracy of translating a desired end-point trajectory to joint coordinates using inverse kinematic relations. Second, the effect of flexibility is included in the dynamic model by approximating flexible links with a numbe...
Citation Formats
O. Baser and E. İ. Konukseven, “Optimal posture control algorithm to improve the stability of redundant haptic devices,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 599–610, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28525.