Determination of Autophagy in the Caco-2 Spontaneously Differentiating Model of Intestinal Epithelial Cells

Tunçer, Sinem
Banerjee, Sreeparna
The Caco-2 colorectal cancer cell line is widely used as a model for intestinal differentiation and barrier function. These cells, upon reaching confluency, spontaneously differentiate into enterocyte-like cells, synthesize intestinal enzymes, and form domes. Caco-2 cells also undergo autophagy in the course of differentiation. The criteria to establish the induction of autophagy in cells are already well established. Here, we describe the protocol for the spontaneous differentiation of Caco-2 cells and the detection of autophagy using Western blot, flow cytometry, and immunofluorescence.
Autophagy in Differentiation and Tissue Maintenance


Expression, purification and functional analysis of advenovirus type 5 e4 orf3 protein
Koyuncu, Emre; Severcan, Feride; Department of Biology (2004)
In this study, structural and functional aspects of adenovirus type 5 (Ad5) E4orf3 protein were analyzed by biophysical and biochemical methods. Ad5 is one of the mostly used gene therapy vectors to date. However, some of its proteins possess oncogenic potential and their presence comprises safety risks. E4orf3 is one of the oncoproteins of Ad5. It also takes important roles in viral infection, and is beneficial for therapy vectors. Therefore, understanding the functions of E4orf3 is very important for deve...
Enhanced expression of HNF4 alpha during intestinal epithelial differentiation is involved in the activation of ER stress
Tuncer, Sinem; Sade-Memişoğlu, Aslı; Keşküş, Ayşe Gökçe; Sheraj, Ilir; Güner, Güneş; Akyol, Aytekin; Banerjee, Sreeparna (WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, 2019-12)
Intestinal epithelial cells are derived from stem cells at the crypts that undergo differentiation into transit-amplifying cells, which in turn form terminally differentiated enterocytes as these cells reach the villus. Extensive alterations in both transcriptional and translational programs occur during differentiation, which can induce the activation of cellular stress responses such as ER stress-related unfolded protein response (UPR) and autophagy, particularly in the cells that are already committed to...
Investigation of the molecular pathways involved in intestinal epithelial differentiation
Sade Memişoğlu, Aslı; Banerjee, Sreeparna; Department of Biology (2014)
The molecular mechanisms of balanced and continuous generation of intestinal epithelial cells, is poorly understood and disruption of this balance may result in neoplastic transformation and malignant growth. Differentiation is regulated by numerous signals, which in turn regulate signaling pathways directing activation or inactivation of certain transcription factors. Perturbations like changes in Ca2+ levels, glucose or amino acid starvation result in an ER stress response, which is also implicated in the...
Evaluation of methylation profiles of an epidermal growth factor receptor gene in a head and neck squamous cell carcinoma patient group
Mutlu, M.; Mutlu, Pelin; Azarkan, S.; Baylr, Ö.; Öcal, B.; Saylam, G.; KORKMAZ, MEHMET HAKAN (2021-03-23)
Upregulation of the epidermal growth factor receptor (EGFR) gene has shown an important impact on the development of head and neck cancers due to its important regulation role on multiple cell signaling pathways. The aim of this study was to investigate the methylation pattern of the promoter region of the EGFR gene between head and neck squamous cell carcinoma (HNSCC) patients and a control group. Forty-seven unrelated HNSCC patients, clinically diagnosed at the Department of Otorhinolaryngology, Dlşkapl Y...
Investigation of the therapeutic effect of sodium butyrate in Caco-2 colon cancer cell line by using ATR-FTIR spectroscopy
Çelik, Buket; Bek, Alpan; Özek, Nihal Şimşek; Department of Micro and Nanotechnology (2018)
Sodium butyrate (NaBt), as one of the HDACi, has been demonstrated that it induces apoptosis, cell cycle arrest, the inhibition of angiogenesis, metastasis and gene expression changes. To date, there are several studies perfomed to investigate its therapeutic effect; however, theexact mechanism at molecular level is not clear yet. Therefore, the current thesis was aimed to clarify the action/theurapeutic potential mechanisms of sodium butyrate in Caco2 colon cancer cell line at molecular level using ATR-FTI...
Citation Formats
S. Tunçer and S. Banerjee, “Determination of Autophagy in the Caco-2 Spontaneously Differentiating Model of Intestinal Epithelial Cells,” Autophagy in Differentiation and Tissue Maintenance, pp. 55–70, 2017, Accessed: 00, 2020. [Online]. Available: