Hide/Show Apps

Emre Coşkun

E-mail
emcoskun@metu.edu.tr
Department
Department of Mathematics
Scopus Author ID
ULRICH BUNDLES ON VERONESE SURFACES
Coşkun, Emre; Genc, Ozhan (American Mathematical Society (AMS), 2017-11-01)
We prove that every Ulrich bundle on the Veronese surface has a resolution in terms of twists of the trivial bundle over P-2. Using this classification, we prove existence results for stable Ulrich bundles over P-k with re...
The period-index problem of the canonical gerbe of symplectic and orthogonal bundles
BİSWAS, Indranil; Coşkun, Emre; DHİLLON, Ajneet (2016-01-15)
We consider regularly stable parabolic symplectic and orthogonal bundles over an irreducible smooth projective curve over an algebraically closed field of characteristic zero. The morphism from the moduli stack of such bun...
Ulrich bundles on quartic surfaces with Picard number 1
Coşkun, Emre (Elsevier BV, 2013-03-01)
In this note, we prove that there exist stable Ulrich bundles of every even rank on a smooth quartic surface X subset of P-3 with Picard number 1. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All right...
The geometry of Ulrich bundles on del Pezzo surfaces
Coşkun, Emre; Kulkarni, Rajesh S.; MUSTOPA, Yusuf (2013-02-01)
Given a smooth del Pezzo surface X-d subset of P-d of degree d, we isolate the essential geometric obstruction to a vector bundle on X-d being an Ulrich bundle by showing that an irreducible curve D of degree dr on X-d rep...
PFAFFIAN QUARTIC SURFACES AND REPRESENTATIONS OF CLIFFORD ALGEBRAS
Coşkun, Emre; Kulkarni, Rajesh S.; Mustopa, Yusuf (2012-01-01)
Given a general ternary form f = f(x(1), x(2), x(3)) of degree 4 over an algebraically closed field of characteristic zero, we use the geometry of K3 surfaces and van den Bergh's correspondence between representations of t...
The Fine Moduli Space of Representations of Clifford Algebras
Coşkun, Emre (Oxford University Press (OUP), 2011-01-01)
Given a fixed binary form f(u,v) of degree d over a field k, the associated Clifford algebra is the k-algebra C(f)=k{u,v}/I, where I is the two-sided ideal generated by elements of the form (alpha u+beta v)(d)-f(alpha,beta...
On representations of Clifford algebras of Ternary cubic forms
Coşkun, Emre; Kulkarni, Rajesh S.; Mustopa, Yusuf (2010-08-14)
In this article, we provide an overview of a one-to-one correspondence between representations of the generalized Clifford algebra C-f of a ternary cubic form f and certain vector bundles (called Ulrich bundles) on a cubic...