Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor

2008-01-01
Eroglu, Inci
Tabanoglu, Altan
Gündüz, Ufuk
Eroglu, Ela
Yucel, Meral
Rhodobacter sphaeroides O.U.001 can produce hydrogen under anaerobic conditions and illumination. The objective of this study was to investigate the performance of an 81 flat plate solar bioreactor operating in outdoor conditions. Different organic acids were used as carbon sources (malate, lactate and acetate) and olive mill waste water was used as a sole substrate source. The consumption and the production of the organic acids were determined by HPLC. The accumulation of by-products, such as poly-beta-hydroxybutyrate (PHB) and carotenoid, throughout the course of hydrogen production was determined.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Hydrogen gas production by combined systems of Rhodobacter sphaeroides OU001 and Halobacterium salinarum in a photobioreactor
Zabut, Baker; EI-Kahlout, Kamal; Yucel, Meral; Gündüz, Ufuk; Turker, Lemi; Eroglu, Inci (2006-09-01)
Rhodobacter sphaeroides O.U.001 is a photosynthetic non-sulfur bacterium which produces hydrogen from organic compounds under anaerobic conditions. Halobacterium salinarum is an archaeon and lives under extremely halophilic conditions (4 M NaCl). H. salinarum contains a retinal protein bacteriorhodopsin in its purple membrane which acts as a light-driven proton pump. In this study the Rhodobacter sphaeroides O.U.001 culture was combined with different amounts of packed cells of H. salinarum S9 or isolated p...
Hydrogen production by different strains of Rhodobacter sphaeroides
Gündüz, Ufuk; Yucel, M; Turker, L; Eroglu, L (2000-06-15)
Utilisation of solar energy by photosynthetic microorganisms for H-2 production attracts much interest due to unlimited supply of energy. It is important to identify the most effective strain in terms of hydrogen production for the feasibility of the process. Four different strains of Rhodobacter sp. were grown in a water-jacketed cylindrical glass-column photobioreactor under anaerobic conditions. Growth characteristics and hydrogen production rates were determined. Comparison between strains of Rhodobacte...
Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus
Sevinc, Pelin; Gündüz, Ufuk; EROĞLU, İNCİ; Yucel, Meral (2012-11-01)
Rhodobacter capsulatus is purple non-sulfur (PNS) bacterium which can produce hydrogen and CO2 by utilizing volatile organic acids in presence of light under anaerobic conditions. Photofermentation by PNS bacteria is strongly affected by temperature and light intensity. In the present study we present the kinetic analysis of growth, hydrogen production, and dual consumption of acetic acid and lactic acid at different temperatures (20, 30 and 38 degrees C) and light intensities (1500, 2000, 3000, 4000 and 50...
Hydrogen production properties of Rhodobacter capsulatus with genetically modified redox balancing pathways
Ozturk, Yavuz; Gokce, Abdulmecit; Peksel, Begum; Gurgan, Muazzez; Ozgur, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yucel, Meral (2012-01-01)
Rhodobacter capsulatus produces molecular hydrogen under the photoheterotrophic growth condition with reduced carbon sources (organic acids). Under this condition, ubiquinol pool is over reduced and excess reducing equivalents are primarily consumed via the reduction of CO2 through the Calvin-Benson-Bassham (CBS) pathway, the dimethylsulfoxide reductase (DMSOR) system or by the reduction of protons into hydrogen gas with the use of nitrogenase to maintain a balanced intracellular oxidation-reduction potenti...
Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides
Ipekoglu, Emre M.; Gocmen, Koray; Oz, Mehmet T.; Gurgan, Muazzez; Yucel, Meral (2017-03-01)
Rhodobacter sphaeroides is a purple non-sulfur bacterium which photoheterotrophically produces hydrogen from organic acids under anaerobic conditions. A gene coding for putative chlorophyll a synthase (chlG) from cyanobacterium Prochlorococcus marinus was amplified by nested polymerase chain reaction and cloned into an inducible-expression plasmid which was subsequently transferred to R. sphaeroides for heterologous expression. Induced expression of chlG in R. sphaeroides led to changes in light absorption ...
Citation Formats
I. Eroglu, A. Tabanoglu, U. Gündüz, E. Eroglu, and M. Yucel, “Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 531–541, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30232.