Hydrogen production by different strains of Rhodobacter sphaeroides

2000-06-15
Gündüz, Ufuk
Yucel, M
Turker, L
Eroglu, L
Utilisation of solar energy by photosynthetic microorganisms for H-2 production attracts much interest due to unlimited supply of energy. It is important to identify the most effective strain in terms of hydrogen production for the feasibility of the process. Four different strains of Rhodobacter sp. were grown in a water-jacketed cylindrical glass-column photobioreactor under anaerobic conditions. Growth characteristics and hydrogen production rates were determined. Comparison between strains of Rhodobacter sp. was based on hydrogen production rate, its duration and the total volume of gas. The best strain was found to be R. sphaeroides L with a gas production rate of 0.0042 L-H2/h/L-culture and total gas volume of 328 ml in about 90 hours. No H2 gas production was observed for R. sphaeroides ATCC 17023 and R. capsulatus ATCC 23782 under the given experimental conditions. Presence of hydrogenase enzyme was also tested in all strains and relative hydrogenase activities were determined.

Suggestions

Phototrophic hydrogen production by agar-immobilized Rhodobacter capsulatus
Elkahlout, Kamal E. M.; Yücel, Ayşe Meral; Eroğlu, İnci; Department of Biotechnology (2011)
photosynthetic bacteria is attractive field as production is fueled by solar energy. Hydrogen production potential of two photosynthetic bacteria R.capsulatus (DSM1710 wild type and R.capsulatus YO3 Hup- uptake hydrogenase deleted mutant strain) were examined in agar immobilized systems. In the present work agar and glutamate concentrations were optimized for immobilization of bacteria while feeding bacteria with 40/2-4 mM acetate/ glutamate. Immobilized bacteria produced hydrogen for 420-1428 hours coverin...
Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor
Eroglu, Inci; Tabanoglu, Altan; Gündüz, Ufuk; Eroglu, Ela; Yucel, Meral (2008-01-01)
Rhodobacter sphaeroides O.U.001 can produce hydrogen under anaerobic conditions and illumination. The objective of this study was to investigate the performance of an 81 flat plate solar bioreactor operating in outdoor conditions. Different organic acids were used as carbon sources (malate, lactate and acetate) and olive mill waste water was used as a sole substrate source. The consumption and the production of the organic acids were determined by HPLC. The accumulation of by-products, such as poly-beta-hyd...
Hydrogen storage in magnesium based thin films
Akyıldız, Hasan; Öztürk, Tayfur; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2010)
A study was carried out for the production of Mg-based thin films which can absorb and desorb hydrogen near ambient conditions, with fast kinetics. For this purpose, two deposition units were constructed; one high vacuum (HV) and the other ultra high vacuum (UHV) deposition system. The HV system was based on a pyrex bell jar and had two independent evaporation sources. The unit was used to deposit films of Mg, Mg capped with Pd and Au-Pd as well as Mg-Cu both in co-deposited and multilayered form within a t...
Optimization of operation temperatures and durations during solar thermal water splitting towards greater energy efficiencies
Yavuzyılmaz, Ezgi; Üner, Deniz; Kıncal, Serkan; Department of Chemical Engineering (2016)
Hydrogen production by solar thermal water splitting is an eco-friendly way of storing solar energy in chemical bonds. The most important obstacles for the viability and the commercialization of this technology are lower energy efficiencies and higher production costs compared to conventional hydrogen production ways such as steam reforming, coal gasification, and electrolysis of water. Two-step thermochemical hydrogen production by using solar energy is an alternative method to conventional hydrogen produc...
Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures
Ozgur, Ebru; Uyar, Basar; Ozturk, Yavuz; Yucel, Meral; Gündüz, Ufuk; Eroglu, Inci (2010-03-01)
Hydrogen is a clean energy alternative to fossil fuels. Photosynthetic bacteria produce hydrogen from organic compounds under anaerobic, nitrogen-limiting conditions through a light-dependent electron transfer process. In this study, the hydrogen production efficiency of phototrophic bacteria, Rhodobacter capsulatus and its Hup mutant strain (an uptake hydrogenase deleted strain) were tested on different initial acetate concentrations at fluctuating temperatures with indoor and outdoor photobioreactors. Ace...
Citation Formats
U. Gündüz, M. Yucel, L. Turker, and L. Eroglu, “Hydrogen production by different strains of Rhodobacter sphaeroides,” 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53467.