Protein-based materials in load-bearing tissue-engineering applications

Download
2014-01-01
Sayin, Esen
Baran, Erkan Turker
Hasırcı, Vasıf Nejat
Proteins such as collagen and elastin are robust molecules that constitute nanocomponents in the hierarchically organized ultrastructures of bone and tendon as well as in some of the soft tissues that have load-bearing functions. In the present paper, the macromolecular structure and function of the proteins are reviewed and the potential of mammalian and non-mammalian proteins in the engineering of load-bearing tissue substitutes are discussed. Chimeric proteins have become an important structural biomaterial source and their potential in tissue engineering is highlighted. Processing of proteins challenge investigators and in this review rapid prototyping and microfabrication are proposed as methods for obtaining precisely defined custom-built tissue engineered structures with intrinsic microarchitecture.
REGENERATIVE MEDICINE

Suggestions

Protein-Protein Interactions in Live Cells: Reinventing the Wheel
Son, Çağdaş Devrim (2018-12-13)
G protein-coupled receptors (GPCRs) are membrane proteins that mediate physiologicalresponse to a diverse array of stimuli. In humans, they mediate the action of hundreds ofpeptide hormones, sensory stimuli, odorants, neurotransmitters, and chemokines. GPCRs alsoare targets for ~40% of all currently marketed pharmaceuticals. These receptors traditionallybeen thought to act as monomeric units. However, recent evidence suggests that GPCRs mayform dimers as part of their normal trafficking and function. While ...
Contact guidance enhances the quality of a tissue engineered corneal stroma
Vrana, E.; Builles, N.; Hindie, M.; Damour, O.; AYDINLI, ATİLLA; Hasırcı, Vasıf Nejat (2008-02-01)
Corneal stroma is a very complex structure, composed of 200 lamellae of oriented collagen fibers. This highly complex nature of cornea is known to be important for its transparency and mechanical integrity. Thus, an artificial cornea design has to take into account this complex structure. In this study, behavior of human corneal keratocytes on collagen films patterned with parallel channels was investigated. Keratocytes proliferated well on films and reached confluency after 7 days in the incubation medium....
Stem Cell and Advanced Nano Bioceramic Interactions
Kose, Sevil; Kankilic, Berna; Gizer, Merve; Dede, Eda Ciftci; Bayramlı, Erdal; KORKUSUZ, PETEK; KORKUSUZ, FEZA (2018-01-01)
Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manuf...
Development of manganese-doped hydroxyapatite incorporated PCL electrospun 3D scaffolds coated with gelatin for bone tissue engineering
Samiei, Alaleh; Keskin, Dilek; Evis, Zafer; Department of Biomedical Engineering (2023-1-27)
Combination of polymers and bioceramics has increased their importance in bone tissue engineering (BTE) to treat various defects. Within this frame, in this thesis, it is aimed to develop a 3D gelatin-coated PCL scaffold combined with Mn-doped hydroxyapatite (HA) in order to investigate the effect of the doping element, i.e., the manganese (Mn) ion, on the structural and biological properties of the composite scaffold. Pure and Mn-doped HAs were synthesized using microwave irradiation, and the samples were ...
Fabrication and characterization of bilayered tissue scaffolds incorporating bioactive agents for skin tissue engineering applications
Aktürk, Ömer; Keskin, Dilek; Bilici, Temel; Department of Engineering Sciences (2015)
In this study, it was aimed to fabricate tissue scaffolds from different biological polymers (collagen, silk fibroin and sericin) for skin tissue engineering applications. For this purpose, bilayered scaffolds composed of epidermal (collagen/sericin films) and dermal (collagen sponges, collagen matrices or silk fibroin matrices) layers were produced with different biomaterial fabrication methods. Casting and solvent evaporation (film), lyophilization/freeze-drying (sponge) and dry/wet electro-spinning (micr...
Citation Formats
E. Sayin, E. T. Baran, and V. N. Hasırcı, “Protein-based materials in load-bearing tissue-engineering applications,” REGENERATIVE MEDICINE, pp. 687–701, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30299.