Stem Cell and Advanced Nano Bioceramic Interactions

2018-01-01
Kose, Sevil
Kankilic, Berna
Gizer, Merve
Dede, Eda Ciftci
Bayramlı, Erdal
KORKUSUZ, PETEK
KORKUSUZ, FEZA
Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity.
NOVEL BIOMATERIALS FOR REGENERATIVE MEDICINE

Suggestions

Facile control of hydroxyapatite particle morphology by utilization of calcium carbonate templates at room temperature
Oral, Çağatay M.; Çalışkan, Arda; Kapusuz, Derya; Ercan, Batur (Elsevier BV, 2020-09-01)
Hydroxyapatite (HAp, Ca-10(PO4)(6)(OH)(2)) particles are widely used in orthopedic applications due to their chemical resemblance to the inorganic component of bone tissue. Since physical and chemical properties of HAp particles influence bone regeneration, various synthesis techniques were developed to precisely control the particle properties. However, most of these techniques required high reaction temperatures, which limited the spectrum of obtained HAp particle morphologies. In this study, ellipsoidal,...
Fatigue behavior of Ti-6Al-4V foams processed by magnesium space holder technique
Asik, E. Erkan; Bor, Sakir (2015-01-05)
Porous Ti-6Al-4V alloys are widely used in the biomedical applications for hard tissue implantation due to their elastic moduli being close to that of bone. In this study, porous Ti-6Al-4V alloys were produced with a powder metallurgical process, space holder technique, where magnesium powders were utilized to generate porosity in the range of 51-65 vol%. The production of porous Ti-6Al-4V alloys was composed of three steps. Firstly, spherical Ti-6Al-4V powders with an average size of 55 mu m were mixed wit...
Biomimetic preparation of HA precursors at 37 degrees C in urea- and enzyme urease-containing synthetic body fluids
Bayraktar, D; Tas, AC (1999-12-01)
An important inorganic phase of synthetic bone applications, calcium hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)), was prepared as a single-phase and sub-micron bioceramic powder. Carbonated HA precursors were synthesized from calcium nitrate tetrahydrate and diammonium hydrogen phosphate salts dissolved in "synthetic body fluid" (SBF) solutions, containing urea (H2NCONH2) and enzyme urease, under the biomimetic conditions of 37 degrees C and pH 7.4, by using a novel chemical precipitation technique.
Biodegradable hydroxyapatite - Polymer composites
Durucan, Caner (2001-04-01)
The fracture of bone due to trauma or due to natural aging is one of the most frequent types of tissue failures. Treatment frequently requires the implantation of ct temporary or permanent prosthesis. The implanted materials may include the components of artificial joints, plates, and screws for fracture fixation. Typically, such implants are intended only to provide structural support or to serve as templates for bone re-growth. In general they are intended to remain in place for the life of the patient or...
Biomechanical Evaluation of an Injectable Alginate / Dicalcium Phosphate Cement Composites for Bone Tissue Engineering
Alshemary, Ammar Z.; Bilgin, Saliha; Işık, Gülhan; Motameni, Ali; Tezcaner, Ayşen; Evis, Zafer (2021-06-01)
Biocompatible dicalcium phosphate (DCP) cements are widely used as bone repair materials. In this study, we aimed to investigate the impact of different amounts of sodium alginate (SA) on the microstructural, mechanical, and biological properties of DCP cements. Beta-tricalcium phosphate (β-TCP) was prepared using a microwave-assisted wet precipitation system. Lattice parameters of the obtained particles determined from X-ray diffraction (XRD), were in good match with a standard phase of β-TCP. Scanning ele...
Citation Formats
S. Kose et al., “Stem Cell and Advanced Nano Bioceramic Interactions,” NOVEL BIOMATERIALS FOR REGENERATIVE MEDICINE, pp. 317–342, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56699.