A software for simulation and controller development for high frequency high voltage power supplies

This paper describes a software developed for the simulation of high voltage (up to 125 kV), high frequency power supply for radiology equipment. The main components of the power supply are an AC-DC conversion stage, a high frequency inverter feeding a resonant load. The resonant load is the impedance reflected to the inverter side of the, high voltage high frequency transformer Seeding the X-ray tube. The software has modules for each of the components of the converter mentioned above, which can be modified to accommodate configuration changes. The set of time domain equations for each modules are capable of representing the operation of the related circuits at different stares of the switches. Predictor-Modifier-Corrector method is used for solving the resulting set of equations. A control module is incorporated into the software, In the presentation here the control module has a fuzzy controller. The paper first illustrates solution accuracy of the model used. Then the prediction accuracy of the performance of the system is demonstrated.


Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2017-07-01)
This paper presents a self-powered interface enabling battery-like operation with a regulated 3 V output from ac signals as low as 0.4 V-peak, generated by electromagnetic energy harvesters under low frequency vibrations. As the first stage of the 180 nm standard CMOS circuit, harvested signal is rectified through an ac/dc doubler with active diodes powered internally by a passive ac/dc quadrupler. The voltage is boosted in the second stage through a low voltage charge pump stimulated by an on-chip ring osc...
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
An experimental study on Power Amplifier linearisation by artificial neural networks Yapay Sinir Aǧlari ile Güç Yükselteç Doǧrusalląstirma Amaçli Deneysel Bir Çalisma
Yesil, Soner; Kolagasioglu, Ahmet Ertugrul; Yılmaz, Ali Özgür (2018-07-05)
This paper represents an experimental study on the linearisation of Power Amplifiers especially on high output power regions by utilizing an artificial neural network structure and open-loop training method. For the same in-band output power, 9dB EVM and 6dB ACLR improvement has been observed on hardware by feeding the proposed digital predistortion signal (DPD) to the PA under test.
A Low Complexity Two-Stage Target Detection Scheme for Resource Limited Radar Systems
Candan, Çağatay (2013-01-01)
A two-stage detector is proposed to accommodate high computational load requirements of modern radar systems. The first stage of the proposed system is a low-complexity detector that operates at an unusually high false alarm probability value around 1/10. This stage is to prescreen and eliminate some of the test cells with relatively few operations. The second stage operates only on the cells passing the prescreening stage and implements a high-complexity detector at a desired system false alarm rate. Due t...
All SiC Grid-Connected PV Supply with HF Link MPPT Converter: System Design Methodology and Development of a 20 kHz, 25 kVA Prototype
ÖZTÜRK, SERKAN; Canver, Mehmet; ÇADIRCI, IŞIK; Ermiş, Muammer (2018-06-01)
Design methodology and implementation of an all SiC power semiconductor-based, grid-connected multi-string photovoltaic (PV) supply with an isolated high frequency (HF) link maximum power point tracker (MPPT) have been described. This system configuration makes possible the use of a simple and reliable two-level voltage source inverter (VSI) topology for grid connection, owing to the galvanic isolation provided by the HF transformer. This topology provides a viable alternative to the commonly used non-isola...
Citation Formats
H. B. Ertan and O. Demirel, “A software for simulation and controller development for high frequency high voltage power supplies,” 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30503.