Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrospinning of chitosan/poly(lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications
Date
2014-11-01
Author
Endoğan Tanır, Tuğba
Hasırcı, Vasıf Nejat
Hasırcı, Nesrin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
Electrospinning, which is a fiber fabrication technique using electrical forces to produce fibers with diameters ranging from nanometers to several micrometers, can be used to prepare materials mimicking the extracellular matrix proteins for potential use as tissue engineering scaffolds. In this study, nanofibrous mats of chitosan (CH) and poly(lactic acid-co-glycolic acid) (PLGA) having fiber diameters between 167 to 525 nm, and containing hydroxyapatite (HAp), were prepared by electrospinning technique. Morphological, chemical, thermal and degradation tests and cell affinity tests were carried out. Chitosan mats were stable in aqueous media and showed degradability in the presence of lysozyme. In PBS solution, PLGA mats disintegrated completely in 2 weeks. Meanwhile, CH-PLGA mats containing equal amounts of both CH and PLGA fibers and CH-PLGA-HAp samples containing 20 % HAp lost 50 and 40 % of their initial weight in 4 weeks, respectively. Cell culture tests showed that all electrospun fibrous mats promoted SaOs-2 cell attachment and proliferation. However, cell proliferation on CH-PLGA-HAp fibrous mats was higher compared to the others after 7 days demonstrating the positive effect of HAp on cell affinity properties compared to pristine CH or PLGA fibrous scaffolds.
Subject Keywords
Chitosan
,
PLGA
,
Hydroxyapatite
,
Scaffold
,
Electrospinning
URI
https://hdl.handle.net/11511/30514
Journal
POLYMER BULLETIN
DOI
https://doi.org/10.1007/s00289-014-1234-y
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Characterization of pea flour based nanofibers produced by electrospinning method
Oğuz, Seren; Şahin, Serpil; Şümnü, Servet Gülüm; Department of Food Engineering (2018)
Electrospinning is a process that produces continuous nanofibers through the action of an electric field imposed on a polymer solution. In this thesis, it was aimed to produce pea flour and hydroxypropyl methylcellulose (HPMC) based homogenous nanofibers by electrospinning. The effects of pH, pea flour and HPMC concentration, and microfluidization on apparent viscosity, electrical conductivity of solutions and nanofiber characteristics were studied. In addition, the effects of voltage and flow rate were ana...
Electrospun multifunctional diclofenac sodium releasing nanoscaffold
Nikkola, L.; Seppala, J.; Harlin, A.; Ndreu, A.; Ashammakhi, N. (American Scientific Publishers, 2006-09-01)
Electrospinning is a method utilized to produce nano-scale fibers for tissue engineering applications. A variety of cells are attracted by nano scale surfaces and structures probably due to the similarity of their natural environment scale. In this study, diclofenac sodium (DS) releasing nanofibers; were manufactured via electrospinning process. Poly(95 epsilon-capro/5 D,L-lactide) was dissolved into acetic acid to form a 20% w/v solution. 2% w/w of DS was then added into the polymer solution and stirred ho...
3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering
Jodati, Hossein; Evis, Zafer; Tezcaner, Ayşen; Alshemary, Ammar Z.; Motameni, Ali (2023-04-01)
Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties. T...
FABRICATION AND EVALUATION OF SULFONATED POLY(ETHER ETHER KETONE) AND FLUORIDATED HYDROXYAPATITE COMPOSITE SCAFFOLDS FOR BONE TISSUE ENGINEERING
Nosratinia, Ataollah; Keskin, Dilek; Evis, Zafer; Department of Biotechnology (2022-5-27)
Poly (ether ether ketone) (PEEK) has attracted the interest of bone tissue engineers due to its close range of mechanical properties to that of human bones, its biocompatibility, and excellent chemical resistance. However, PEEK is bioinert and has very low hydrophilicity. Sulfonation can compensate for this by introducing hydrophilic sulfonate groups. Furthermore, hydroxyapatite (HA) which is the main component of the bone, can introduce bioactivity to the scaffold. Compared to pure HA, Fluoridated hydroxya...
Electro-chemo-mechanical induced fracture modeling in proton exchange membrane water electrolysis for sustainable hydrogen production
Aldakheel, Fadi; Kandekar, Chaitanya; Bensmann, Boris; Dal, Hüsnü; Hanke-Rauschenbach, Richard (2022-10-01)
This work provides a framework for predicting fracture of catalyst coated membrane (CCM) due to coupled electro-chemo-mechanical degradation processes in proton exchange membrane water electrolysis (PEMWE) cells. Electrolysis in the catalyst layer (CL) bulk, diffusion of Hydrogen proton through the membrane (MEM), and mechanical compression at the interface with the porous transport layer (PTL) generate micro-cracks that influence the catalyst degradation. Based on our experimental observations, we propose ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Endoğan Tanır, V. N. Hasırcı, and N. Hasırcı, “Electrospinning of chitosan/poly(lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications,”
POLYMER BULLETIN
, pp. 2999–3016, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30514.