FABRICATION AND EVALUATION OF SULFONATED POLY(ETHER ETHER KETONE) AND FLUORIDATED HYDROXYAPATITE COMPOSITE SCAFFOLDS FOR BONE TISSUE ENGINEERING

Download
2022-5-27
Nosratinia, Ataollah
Poly (ether ether ketone) (PEEK) has attracted the interest of bone tissue engineers due to its close range of mechanical properties to that of human bones, its biocompatibility, and excellent chemical resistance. However, PEEK is bioinert and has very low hydrophilicity. Sulfonation can compensate for this by introducing hydrophilic sulfonate groups. Furthermore, hydroxyapatite (HA) which is the main component of the bone, can introduce bioactivity to the scaffold. Compared to pure HA, Fluoridated hydroxyapatite (FHA) has higher stability and possesses higher osteogenic activity. In this context, FHA was prepared and combined with previously prepared Sulfonated PEEK (sPEEK). Wet-electrospinning method was used to make sPEEK scaffolds combined with HA and FHA in 1%, 2.5%, and 5% ratios for bone tissue engineering. SEM Analysis, FTIR Analysis, Mechanical Strength tests, Water uptake measurement, in vitro degradation assay, Simulated Body Fluid assay, and cell attachment and proliferation assay were performed. Even though toxic at high concentrations, HA and FHA at ratios that were combined with sPEEK to form electrospun scaffolds showed good cell viability and improved proliferation at the optimum concentrations. Scaffolds show mineralization in the SBF solution and tend to gradually degrade in PBS. In vitro experiments with Saos-2 cells show that FHA in optimum ratios is less cytotoxic than HA and incorporation of both HA and FHA in optimum ratios into the sPEEK scaffolds enhance cell proliferation. Among groups, considering all properties 1% FHA*sPEEK can be suggested as the most promising one. It is concluded that the scaffolds are cytocompatible and provide a desirable environment for cell growth and proliferation.

Suggestions

Fabrication of a multi-layered decellularized amniotic membranes as tissue engineering constructs
Yuksel, Sumeyye; Asik, Mehmet Dogan; AYDIN, HALİL MURAT; Tönük, Ergin; Aydin, Emin Yusuf; Bozkurt, Murat (2022-02-01)
As a promising approach in tissue engineering, decellularization has become one of the mostly-studied research areas in tissue engineering thanks to its potential to bring about several advantages over synthetic materials since it can provide a 3-dimensional ECM structure with matching biomechanical properties of the target tissue. Amniotic membranes are the tissues that nurture the embryos during labor. Similarly, these materials have also been proposed for tissue regeneration in several applications. The ...
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
MAVİŞ, BORA; Demirtas, Tolga T.; GÜMÜŞDERELİOĞLU, MENEMŞE; Gündüz, Güngör; Colak, Uner (2009-10-01)
Immersion of electrospun polycaprolactone (PCL) nanofiber mats in calcium phosphate solutions similar to simulated body fluid resulted in deposition of biomimetic calcium phosphate layer on the nanofibers and thus a highly bioactive novel scaffold has been developed for bone tissue engineering. Coatings with adequate integrity, favorable chemistry and morphology were achieved in less than 6 h of immersion. In the coating solutions, use of lower concentrations of phosphate sources with respect to the literat...
Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications
Isikli, C.; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2012-02-01)
Composite scaffolds prepared from natural polymers and hydroxyapatite (HA) are expected to have enhanced osteoconductive properties and as a result gained much attention in recent years for use in bone tissue-engineering applications. Although there are various natural polymers available for this purpose, chitosan (C) and gelatin (G) are commonly studied because of their inherent properties. The aim of this study was to prepare three-dimensional (3D) scaffolds using these two natural polymers and to add eit...
Electrospinning of chitosan/poly(lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications
Endoğan Tanır, Tuğba; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2014-11-01)
Electrospinning, which is a fiber fabrication technique using electrical forces to produce fibers with diameters ranging from nanometers to several micrometers, can be used to prepare materials mimicking the extracellular matrix proteins for potential use as tissue engineering scaffolds. In this study, nanofibrous mats of chitosan (CH) and poly(lactic acid-co-glycolic acid) (PLGA) having fiber diameters between 167 to 525 nm, and containing hydroxyapatite (HAp), were prepared by electrospinning technique. M...
Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering
Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen (2016-12-01)
Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P-80/CA(20), P-50/CA(50), and F-20/CA(80)%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve ...
Citation Formats
A. Nosratinia, “FABRICATION AND EVALUATION OF SULFONATED POLY(ETHER ETHER KETONE) AND FLUORIDATED HYDROXYAPATITE COMPOSITE SCAFFOLDS FOR BONE TISSUE ENGINEERING,” M.S. - Master of Science, Middle East Technical University, 2022.