Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Electrospun multifunctional diclofenac sodium releasing nanoscaffold
Date
2006-09-01
Author
Nikkola, L.
Seppala, J.
Harlin, A.
Ndreu, A.
Ashammakhi, N.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Electrospinning is a method utilized to produce nano-scale fibers for tissue engineering applications. A variety of cells are attracted by nano scale surfaces and structures probably due to the similarity of their natural environment scale. In this study, diclofenac sodium (DS) releasing nanofibers; were manufactured via electrospinning process. Poly(95 epsilon-capro/5 D,L-lactide) was dissolved into acetic acid to form a 20% w/v solution. 2% w/w of DS was then added into the polymer solution and stirred homogenously. About 1 g of polymer/drug solution was spun onto the collector under electrostatic conditions. The distance between needle tip and sample collector was arranged to 10 cm and applied electric field was 2 kV/cm. Release rate of DS was measured by using UV/VIS spectrophotometer. Resulted highly porous nanofiber scaffold was about 2 mm thick and the diameter of nanofibers was approximately 130 nm. Structure included in also spheres with approximately diameter of 3.30 mu m. About 45% of DS was released during the first 24 hours and after that the release decreased to almost zero value. After 35 days release rate increased. This study revealed that manufacturing of highly porous DS releasing nanoscaffold by electrospinning process is feasible. Having fast DS release rate nanofibrous scaffold made of poly(95 epsilon-capro/5 D,L-lactide) can be of benefit for applications where immediate control of tissue reaction is needed.
Subject Keywords
General Materials Science
,
Bioengineering
,
General Chemistry
,
Condensed Matter Physics
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/68129
Journal
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
DOI
https://doi.org/10.1166/jnn.2006.467
Collections
Department of Biology, Article