Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Importance sampling for a Markov modulated queuing network
Date
2009-02-01
Author
Sezer, Ali Devin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
158
views
0
downloads
Cite This
Importance sampling (IS) is a variance reduction method for simulating rare events. A recent paper by Dupuis, Wang and Sezer [Paul Dupuis, Ali Devin Sezer, Hui Wang, Dynamic importance sampling for queueing networks, Annals of Applied Probability 17 (4) (2007) 1306-1346] exploits connections between IS and stochastic games and optimal control problems to show how to design and analyze simple and efficient IS algorithms for various overflow events of tandem Jackson Networks. The present paper carries out a program parallel to the paper by Dupuis et al. for a two node tandem network whose arrival and service rates are modulated by in exogenous finite state Markov process. The overflow event we study is the following: the number of customers in the system reaches n without the system ever becoming empty, given that initially the system is empty.
Subject Keywords
Dynamic importance sampling
,
Rare event simulation
,
Tandem queues
,
Queuing networks
,
Markov modulated
,
Regime switch
,
Overflow probability
,
Large deviations
,
Isaacs equation
,
Optimal control
URI
https://hdl.handle.net/11511/30526
Journal
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
DOI
https://doi.org/10.1016/j.spa.2008.02.009
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Asymptotically optimal importance sampling for Jackson networks with a tree topology
Sezer, Ali Devin (2010-02-01)
This note describes an importance sampling (IS) algorithm to estimate buffer overflows of stable Jackson networks with a tree topology. Three new measures of service capacity and traffic in Jackson networks are introduced and the algorithm is defined in their terms. These measures are effective service rate, effective utilization and effective service-to-arrival ratio of a node. They depend on the nonempty/empty states of the queues of the network. For a node with a nonempty queue, the effective service rat...
Joint prior distributions for variance parameters in Bayesian analysis of normal hierarchical models
Demirhan, Haydar; Kalaylıoğlu Akyıldız, Zeynep Işıl (2015-03-01)
In random effect models, error variance (stage 1 variance) and scalar random effect variance components (stage 2 variances) are a priori modeled independently. Considering the intrinsic link between the stages 1 and 2 variance components and their interactive effect on the parameter draws in Gibbs sampling, we propose modeling the variances of the two stages a priori jointly in a multivariate fashion. We use random effects linear growth model for illustration and consider multivariate distributions to model...
Multi-target tracking using passive doppler measurements
Guldogan, Mehmet B.; Orguner, Umut; Gustafsson, Fredrik (2013-04-26)
In this paper, we analyze the performance of the Gaussian mixture probability hypothesis density (GM-PHD) filter in tracking multiple non-cooperative targets using Doppler-only measurements in a passive sensor network. Clutter, missed detections and multi-static Doppler variances are incorporated into a realistic multi-target scenario. Simulation results show that the GM-PHD filter successfully tracks multiple targets using only Doppler shift measurements in a passive multi-static scenario.
Second-order experimental designs for simulation metamodeling
Batmaz, İnci (SAGE Publications, 2002-12-01)
The main purpose of this study is to compare the performance of a group of second-order designs such as Box-Behnken, face-center cube, three-level factorial, central composite, minimum bias, and minimum variance plus bias for estimating a quadratic metamodel. A time-shared computer system is used to demonstrate the ability of the designs in providing good fit of the metamodel to the simulation response. First, for various numbers of center runs, these designs are compared with respect to their efficiency, r...
Marginalized transition random effect models for multivariate longitudinal binary data
İlk Dağ, Özlem (Wiley, 2007-03-01)
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. D. Sezer, “Importance sampling for a Markov modulated queuing network,”
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
, pp. 491–517, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30526.