Importance sampling for a Markov modulated queuing network

Importance sampling (IS) is a variance reduction method for simulating rare events. A recent paper by Dupuis, Wang and Sezer [Paul Dupuis, Ali Devin Sezer, Hui Wang, Dynamic importance sampling for queueing networks, Annals of Applied Probability 17 (4) (2007) 1306-1346] exploits connections between IS and stochastic games and optimal control problems to show how to design and analyze simple and efficient IS algorithms for various overflow events of tandem Jackson Networks. The present paper carries out a program parallel to the paper by Dupuis et al. for a two node tandem network whose arrival and service rates are modulated by in exogenous finite state Markov process. The overflow event we study is the following: the number of customers in the system reaches n without the system ever becoming empty, given that initially the system is empty.


Asymptotically optimal importance sampling for Jackson networks with a tree topology
Sezer, Ali Devin (2010-02-01)
This note describes an importance sampling (IS) algorithm to estimate buffer overflows of stable Jackson networks with a tree topology. Three new measures of service capacity and traffic in Jackson networks are introduced and the algorithm is defined in their terms. These measures are effective service rate, effective utilization and effective service-to-arrival ratio of a node. They depend on the nonempty/empty states of the queues of the network. For a node with a nonempty queue, the effective service rat...
Joint prior distributions for variance parameters in Bayesian analysis of normal hierarchical models
Demirhan, Haydar; Kalaylıoğlu Akyıldız, Zeynep Işıl (2015-03-01)
In random effect models, error variance (stage 1 variance) and scalar random effect variance components (stage 2 variances) are a priori modeled independently. Considering the intrinsic link between the stages 1 and 2 variance components and their interactive effect on the parameter draws in Gibbs sampling, we propose modeling the variances of the two stages a priori jointly in a multivariate fashion. We use random effects linear growth model for illustration and consider multivariate distributions to model...
Multi-target tracking using passive doppler measurements
Guldogan, Mehmet B.; Orguner, Umut; Gustafsson, Fredrik (2013-04-26)
In this paper, we analyze the performance of the Gaussian mixture probability hypothesis density (GM-PHD) filter in tracking multiple non-cooperative targets using Doppler-only measurements in a passive sensor network. Clutter, missed detections and multi-static Doppler variances are incorporated into a realistic multi-target scenario. Simulation results show that the GM-PHD filter successfully tracks multiple targets using only Doppler shift measurements in a passive multi-static scenario.
Second-order experimental designs for simulation metamodeling
Batmaz, İnci (SAGE Publications, 2002-12-01)
The main purpose of this study is to compare the performance of a group of second-order designs such as Box-Behnken, face-center cube, three-level factorial, central composite, minimum bias, and minimum variance plus bias for estimating a quadratic metamodel. A time-shared computer system is used to demonstrate the ability of the designs in providing good fit of the metamodel to the simulation response. First, for various numbers of center runs, these designs are compared with respect to their efficiency, r...
Marginalized transition random effect models for multivariate longitudinal binary data
İlk Dağ, Özlem (Wiley, 2007-03-01)
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either...
Citation Formats
A. D. Sezer, “Importance sampling for a Markov modulated queuing network,” STOCHASTIC PROCESSES AND THEIR APPLICATIONS, pp. 491–517, 2009, Accessed: 00, 2020. [Online]. Available: