Stability criteria for ordinary linear system.

1966
EN-Nashif, Bassam Yusuf

Suggestions

Stability criteria for linear periodic impulsive Hamiltonian systems
Guseinov, G. Sh.; Zafer, Ağacık (2007-11-15)
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
Stability criterion for second order linear impulsive differential equations with periodic coefficients
Guseinov, G. Sh.; Zafer, Ağacık (Wiley, 2008-01-01)
In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stability criteria for linear Hamiltonian systems under impulsive perturbations
Kayar, Z.; Zafer, Ağacık (2014-03-01)
Stability criteria are given for planar linear periodic Hamiltonian systems with impulse effect by making use of a Lyapunov type inequality. A disconjugacy criterion is also established. The results improve the related ones in the literature for such systems.
Stability analysis of semi-rigidly connected columns.
Feşel, Attila K; Department of Civil Engineering (1971)
Stability analysis of constraints in flexible multibody systems dynamics
İder, Sıtkı Kemal (Elsevier BV, 1990-1)
Automated algorithms for the dynamic analysis and simulation of constrained multibody systems assume that the constraint equations are linearly independent. During the motion, when the system is at a singular configuration, the constraint Jacobian matrix possesses less than full rank and hence it results in singularities. This occurs when the direction of a constraint coincides with the direction of the lost degree of freedom. In this paper the constraint equations for deformable bodies are modified for use...
Citation Formats
B. Y. EN-Nashif, “Stability criteria for ordinary linear system.,” Middle East Technical University, 1966.