Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9 degrees 50 ' N
Download
index.pdf
Date
2013-04-01
Author
Yücel, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
The chemistry of vent fluids that emanate to the seafloor undergoes dramatic changes after volcanic eruptions. Data on these changes are still limited, but the best studied example is the East Pacific Rise (EPR) at 9 degrees 50N, where the temporal evolution of the vent fluid chemistry after the 1991/1992 eruption was documented. The area underwent another eruption sequence during late 2005/early 2006, and here we show that a similar evolution is recurring in the iron and sulfide contents of the high-temperature fluids sampled in June 2006, January 2007, and June 2008. The vents have had increasing dissolved iron and decreasing acid-volatile sulfide (free sulfide plus FeS) concentrations with 1 order of magnitude variation. In addition, chromium reducible sulfide (mainly pyrite) also had fivefold decreasing concentrations over the 3years. Our results confirm a pattern that was noted only once before for 9 degrees 50N EPR and emphasize the dramatic yearly variability in the concentrations of iron-sulfur species emanating from vents.
Subject Keywords
Hydrothermal vents
,
East Pacific Rise
,
Seafloor eruption
,
Sulfide
,
Iron
URI
https://hdl.handle.net/11511/30556
Journal
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
DOI
https://doi.org/10.1002/ggge.20088
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean
Yücel, Mustafa; Chan, Clara S.; Luther, George W. (2011-06-01)
Hydrothermal vents emit sulphur and metals to the ocean(1). Particular attention has been paid to hydrothermal fluxes of iron(2-4), a limiting micronutrient of marine primary production(5). Vent-derived iron was previously thought to rapidly oxidize and precipitate around vents(6). However, organic matter can bind to and stabilize dissolved and particulate iron in hydrothermal plumes(7-9), facilitating its dispersion into the open ocean(10). Here, we report measurements of the chemical speciation of sulphid...
Sulfide Oxidation across Diffuse Flow Zones of Hydrothermal Vents
Gartman, Amy; Yücel, Mustafa; Madison, Andrew S.; Chu, David W.; MA, Shufen; Janzen, Christopher P.; Becker, Erin L.; Beinart, Roxanne A.; Girguis, Peter R.; Luther, George W. (2011-09-01)
The sulfide (H(2)S/HS(-)) that is emitted from hydrothermal vents begins to oxidize abiotically with oxygen upon contact with ambient bottom water, but the reaction kinetics are slow. Here, using in situ voltammetry, we report detection of the intermediate sulfur oxidation products polysulfides [S(x)(2-)] and thiosulfate [S(2)O(3)(2-)], along with contextual data on sulfide, oxygen, and temperature. At Lau Basin in 2006, thiosulfate was identified in less than one percent of approximately 10,500 scans and n...
Soluble, Colloidal, and Particulate Iron Across the Hydrothermal Vent Mixing Zones in Broken Spur and Rainbow, Mid-Atlantic Ridge
Yücel, Mustafa; Le Bris, Nadine (2021-10-01)
The slow-spreading Mid-Atlantic Ridge (MAR) forms geological heterogeneity throughout the ridge system by deep crustal faults and their resultant tectonic valleys, which results in the existence of different types of hydrothermal vent fields. Therefore, investigating MAR hydrothermal systems opens a gate to understanding the concentration ranges of ecosystem-limiting metals emanating from compositionally distinct fluids for both near-field chemosynthetic ecosystems and far-field transport into the ocean int...
EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP OVER RECTANGULAR PROFILE FINS PLACED IN A SQUARE CHANNEL
Aylı, Ece; Kıyıcı, Fırat; Bayer, Özgür; ARADAĞ ÇELEBİOĞLU, SELİN (2014-06-19)
In this study, with the help of a fan, fully developed turbulent flow conditions are experimentally obtained to investigate the heat transfer and pressure drop characteristics of rectangular fins. Fins with different geometries are placed to the bottom surface of a square shaped channel. Finned test pieces are heated by constant heat flux and other parts are kept as well insulated. The effect of fin height to the heat transfer coefficient is investigated by performing experiments. Temperature distributions,...
Observed basin-wide propagation of Mediterranean water in the Black Sea
Falina, Anastasia; Sarafanov, Artem; Özsoy, Emin; Turunçoğlu, Ufuk Utku (2017-04-01)
Mediterranean water entering the Black Sea through the Bosphorus Strait forms middepth intrusions that contribute to the salt, heat, and volume balances of the sea, ventilate its water column at intermediate depths and restrain the upward flux of hydrogen sulfide from deeper layers. Despite the importance for the Black Sea environment, the circulation of Mediterranean-origin water in the basin is fundamentally underexplored. Here we use hydrographic data collected from ships and Argo profiling floats to ide...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Yücel, “Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9 degrees 50 ′ N,”
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
, pp. 759–765, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30556.