Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides OU 001 grown in the waste water of a sugar refinery
Date
1999-04-30
Author
Yigit, DO
Gündüz, Ufuk
Turker, L
Yucel, M
Eroglu, I
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
121
views
0
downloads
Cite This
Rhodobacter sphaeroides O.U.001 is able to produce hydrogen anaerobically upon illumination. The cells were screened for the presence of valuable by-products such as poly-e-hydroxy (PHB) butyric acid aiming to improve the feasibility of the system. Also waste water from a sugar refinery was used for bacterial growth to further increase the feasibility. Under aerobic conditions the standard growth media containing L-malic acid and sodium glutamate in 7.5/10 and 15/2 molar ratios and a medium containing 30% waste water from sugar refinery were used, In this case the maximum concentration of PHB produced were approximately 0.2 g l(-1) in both of the standard media whereas it was 0.3 g l(-1) in medium containing 30% waste water. By using the medium containing 30% waste water, PHB and hydrogen productions were determined under anaerobic conditions. The maximum concentration of PHB produced was around 0.5 g l(-1) and the amount of gas collected was 35 mi in 108 h. From these results it can be concluded that PHB can be collected during hydrogen production. The use of waste water from sugar refinery increased the yield.
Subject Keywords
Rhodobacter sphaeroides
,
Hydrogen
,
Poly-beta-hydroxy butyric acid
,
Waste water
URI
https://hdl.handle.net/11511/30646
Journal
JOURNAL OF BIOTECHNOLOGY
DOI
https://doi.org/10.1016/s0168-1656(99)00066-8
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor
Eroglu, Inci; Tabanoglu, Altan; Gündüz, Ufuk; Eroglu, Ela; Yucel, Meral (2008-01-01)
Rhodobacter sphaeroides O.U.001 can produce hydrogen under anaerobic conditions and illumination. The objective of this study was to investigate the performance of an 81 flat plate solar bioreactor operating in outdoor conditions. Different organic acids were used as carbon sources (malate, lactate and acetate) and olive mill waste water was used as a sole substrate source. The consumption and the production of the organic acids were determined by HPLC. The accumulation of by-products, such as poly-beta-hyd...
Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors
Uyar, Basar; EROĞLU, İNCİ; Yucel, Meral; Gündüz, Ufuk; Turker, Lemi (2007-12-01)
Rhodobacter sphaeroides O.U. 001 is a purple non-sulfur bacterium which evolves hydrogen from the breakdown of organic acids under illumination and anaerobic conditions. In this study, the effect of light intensity, light wavelength and illumination protocol on the growth and hydrogen production of R. sphaeroides O.U. 001 was investigated in gas-tight glass photobioreactors with defined medium. The results showed Also it was found that the rate of hydrogen production increased with increasing light intensit...
Evaluation of hydrogen production by Rhodobacter sphaeroides OU001 and its hupSL deficient mutant using acetate and malate as carbon sources
KARS, GÖKHAN; Gündüz, Ufuk; Yucel, Meral; Rakhely, Gabor; Kovacs, Kornel L.; Eroglu, Inci (2009-03-01)
Rhodobacter sphaeroides O.U.001 is one of the candidates for photobiological hydrogen production among purple non-sulfur bacteria. Hydrogen is produced by Mo-nitrogenase from organic acids such as malate or lactate. A hupSL in frame deletion mutant strain was constructed without using any antibiotic resistance gene. The hydrogen production potential of the R. sphaeroides O.U.001 and its newly constructed hupSL deleted mutant strain in acetate media was evaluated and compared with malate containing media. Th...
Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides
Ipekoglu, Emre M.; Gocmen, Koray; Oz, Mehmet T.; Gurgan, Muazzez; Yucel, Meral (2017-03-01)
Rhodobacter sphaeroides is a purple non-sulfur bacterium which photoheterotrophically produces hydrogen from organic acids under anaerobic conditions. A gene coding for putative chlorophyll a synthase (chlG) from cyanobacterium Prochlorococcus marinus was amplified by nested polymerase chain reaction and cloned into an inducible-expression plasmid which was subsequently transferred to R. sphaeroides for heterologous expression. Induced expression of chlG in R. sphaeroides led to changes in light absorption ...
Characterization of doped polypyrrole-poly(methylthienyl methacrylate) films via pyrolysis mass spectrometry
Athar, Imran; Hacaloğlu, Jale; Toppare, Levent Kamil (2004-07-01)
This work presents the characterization of p-toluene sulfonate doped polypyrrole-poly(methylthienyl methacrylate) films synthesized by electrochemical polymerization of pyrrole on a poly(methylthienyl methacrylate) coated anode. Pyrolysis mass spectrometry was used to characterize the polymer. The study was focused on the influence of each of the components on the thermal degradation behaviour of the other. The results indicated that decomposition of the matrix polymer, ie poly(methylthienyl methacrylate), ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Yigit, U. Gündüz, L. Turker, M. Yucel, and I. Eroglu, “Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides OU 001 grown in the waste water of a sugar refinery,”
JOURNAL OF BIOTECHNOLOGY
, pp. 125–131, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30646.