Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release

1999-04-01
Yaylaoglu, MB
Korkusuz, P
Ors, U
Korkusuz, F
Hasırcı, Vasıf Nejat
This study was carried out to develop a calcium phosphate-gelatin composite implant that would mimic the structure and function of bone for use in filling voids or gaps and to release bioactive compounds like drugs, growth hormones into the implant site to assist healing. XDS analysis of the synthesized calcium phosphate revealed a calcium to phosphorus molar ratio of ca. 2.30, implying a less erodible material than hydroxyapatite (1.67). Release of the antibiotic gentamicin from the implant was with a burst, whether in situ or in vivo, followed by an almost constant release for about three months. It was found that the release rate could be decreased by increasing the density of the gelatin membrane. Upon implantation into rabbit tibia the release duration was substantially shortened (to about 4 weeks) with respect to the in situ tests basically due to the degradation of gelatin. In vivo studies with rabbits confirmed this degradation. The composite was perfectly biocompatible as shown by the histological studies. It, thus! has a great potential as a bone substitute material. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Suggestions

Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering
Eke, Gozde; Mangir, Naside; Hasırcı, Nesrin; MacNeil, Sheila; Hasırcı, Vasıf Nejat (2017-06-01)
The aim of this study was to design a dermal substitute containing adipose derived stem cells (ADSC) that can be used to improve the regeneration of skin on difficult wound beds by stimulating rapid neovascularization. This was achieved by first synthesizing methacrylated gelatin (GeIMA) and methacrylated hyaluronic acid (HAMA) precursors which could be stored at -80 degrees C after lyophilisation. Polymer precursors were then dissolved in media (in 15:1 ratio), ADSCs added together with the photoinitiator ...
Development of manganese-doped hydroxyapatite incorporated PCL electrospun 3D scaffolds coated with gelatin for bone tissue engineering
Samiei, Alaleh; Keskin, Dilek; Evis, Zafer; Department of Biomedical Engineering (2023-1-27)
Combination of polymers and bioceramics has increased their importance in bone tissue engineering (BTE) to treat various defects. Within this frame, in this thesis, it is aimed to develop a 3D gelatin-coated PCL scaffold combined with Mn-doped hydroxyapatite (HA) in order to investigate the effect of the doping element, i.e., the manganese (Mn) ion, on the structural and biological properties of the composite scaffold. Pure and Mn-doped HAs were synthesized using microwave irradiation, and the samples were ...
Preparation and characterization of chitosan-gelatin/hydroxyapatite scaffolds for hard tissue engineering approaches
Işıklı, Cansel; Hasırcı, Nesrin; Department of Biomedical Engineering (2010)
Hard tissue engineering holds the promise of restoring the function of failed hard tissues and involves growing specific cells on extracellular matrix (ECM) to develop „„tissue-like” structures or organoids. Chitosan is a linear amino polysaccharide that can provide a convenient physical and biological environment in tissue regeneration attempt. To improve chitosan‟s mechanical and biological properties, it was blended with another polymer gelatin. 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-...
Characterization and Evaluation of Triamcinolone, Raloxifene, and Their Dual-Loaded Microspheres as Prospective Local Treatment System in Rheumatic Rat Joints
Ocal, Yigit; Kurum, Baris; Karahan, Siyami; Tezcaner, Ayşen; Ozen, Seza; Keskin, Dilek (Elsevier BV, 2014-8)
In this study, injectable microspheres were developed for the local treatment of joint degeneration in rheumatoid arthritis (RA). Microspheres loaded with triamcinolone (TA), a corticosteroid drug, and/or raloxifene (Ral), a cartilage regenerative drug, were prepared with a biodegradable and biocompatible polymer, polycaprolactone (PCL). Microspheres were optimized for particle size, structural properties, drug release, and loading properties. In vitro release of Ral was very slow because of the low solubil...
DEVELOPMENT OF 3D PRINTED PECTIN AND GELATIN BASED BIOACTIVE SKIN GRAFTS
Bostancı, Nazlı Seray; Tezcaner, Ayşen; Hasırcı, Nesrin; Department of Biotechnology (2021-8-10)
The aim of this study was to develop an easily applicable and bioactive skin graft composed of methacrylated pectin (PeMA) and methacrylated gelatin (GelMA), containing curcumin and/or Vitamin-C as antimicrobial and healing accelerating agents, respectively. Grafts were prepared in slab, 3D printed and 3D bioprinted forms and different properties were evaluated. Preparation parameters were optimized using slabs having different compositions (PeMA:GelMA as P:G 1:1, 1:2 and 1:3, v/v). P1:G1 solution did not h...
Citation Formats
M. Yaylaoglu, P. Korkusuz, U. Ors, F. Korkusuz, and V. N. Hasırcı, “Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release,” BIOMATERIALS, pp. 711–719, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30734.