Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks
Date
2002-01-01
Author
Ozalp, Y
Ozdemir, N
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
126
views
0
downloads
Cite This
A biodegradable and biocompatible polymeric system was developed for the controlled release of vancomycin for the treatment of brain abscesses. Poly(D,L-lactic acid) (PLA) and its copolymers poly( lactide-co-glycolide) PLGA 90: 10 and PLGA 70: 30, were prepared. Polymer disks containing vancomycin (VN) were prepared by solvent casting from methylene chloride solutions. Degradation of the polymer disk was studied by scanning electron microscopy, NMR and GPC. SEM revealed an increasing degree of degradation with time with both PLGAs, the effect being more distinct in the PLGA with the higher glycolide content (PLGA 70: 30), which was confirmed with GPC, which showed both a decrease in the molecular weights of PLGA and a decrease in the heterogeneity index (chain length distribution) upon incubation in isotonic phosphate buffer at 37degreesC for up to 5 weeks. NMR showed a decrease in the CH2 contents of the copolymers, implying that the glycolide component of the copolymers is being preferentially degraded. In situ, vancomycin release behaviour of the disks in pH 7.4 phosphate buffer saline (PBS) was followed for 2 months in a static system. It was observed that release was according to Higuchi kinetics (Q vs. t(1/2)), and introduction of low molecular weight PLA or hydrophilic compounds like PEG increased the release rate.
Subject Keywords
Vancomycin
,
PLA
,
PLGA
,
Antibiotic delivery
,
Encapsulation
URI
https://hdl.handle.net/11511/31124
Journal
JOURNAL OF MICROENCAPSULATION
DOI
https://doi.org/10.1080/02652040110065404
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Vancomycin containing PLLA/beta-TCP controls experimental osteomyelitis in vivo
Kankilic, Berna; BİLGİÇ, ELİF; KORKUSUZ, PETEK; Korkusuz, Feza (2014-11-19)
Background: Implant-related osteomyelitis (IRO) is recently controlled with local antibiotic delivery systems to overcome conventional therapy disadvantages. In vivo evaluation of such systems is however too little.
Sequential BMP-2/BMP-7 delivery from polyester nanocapsules
Yilgor, P.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2010-05-01)
The aim of this study was to develop a nanosized, controlled growth factor release system to incorporate into tissue engineering scaffolds and thus activate the cells seeded in the scaffold. Nanocapsules of poly(lactic acid-co-glycolic acid) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were loaded with the bone morphogenetic proteins BMP-2 and BMP-7, respectively, and with bovine serum albumin (BSA), the model protein. BSA-loading efficiency and release kinetics were used to determine the ...
Immunotherapeutic utility of stimulatory and suppressive oligodeoxynucleotides.
Ishii, KJ; Gursel, I; Gürsel, Mayda; Klinman, DM (2004-04-01)
Bacterial DNA contains immunostimulatory CpG motifs that interact with toll-like receptor 9 on immune cells to stimulate the production of cytokines, chemokines and immunoglobulins. Synthetic oligodeoxynucleotides (ODNs) containing CpG motifs mimic the activity of bacterial DNA. Recently, several structurally distinct types of CpG ODN were identified that differentially activate human immune cells. These ODNs may be useful as vaccine adjuvants, anti-allergens and in the treatment of infectious diseases and ...
SRC family kinase inhibitors antagonize the toxicity of multiple serotypes of botulinum neurotoxin in human embryonic stem cell-derived motor neurons.
Kiriş, Erkan; Nuss, JE; Wanner, LM; Peyser, BD; Du, HT; Gomba, GY; Kota, KP; Panchal, RG; Gussio, R; Kane, CD; Tessarollo, L; Bavari, S (2015-05-01)
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors a...
Bacilysin biosynthesis by a partially-purified enzyme fraction from Bacillus subtilis
Yazgan, A; Özcengiz, Gülay; Ozcengiz, E; Kilinc, K; Marahiel, MA; Alaeddinoglu, NG (Elsevier BV, 2001-10-04)
Biosynthesis of dipeptide antibiotic bacilysin by a partially purified enzyme prepared from Bacillus subtilis PY79 was studied. Cell material was desintegrated by treatment with lysozyme and sonication and the extract was subjected to ammonium sulfate fractionation. Bacilysin-synthesizing enzyme activity was precipitated between 40% to 70% ammonium sulfate saturation. In vitro enzymatical synthesis of bacilysin was confirmed by performing thin layer chromatographic comparison of the antibiotic formed with t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Ozalp, N. Ozdemir, and V. N. Hasırcı, “Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks,”
JOURNAL OF MICROENCAPSULATION
, pp. 83–94, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31124.