Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation and Characterization of Mixed Halide MAPbI(3-x)Cl(x) Perovskite Thin Films by Three-Source Vacuum Deposition
Date
2020-04-01
Author
Babaei, Azin
Soltanpoor, Wiria
Tesa-Serrate, Maria A.
Yerci, Selçuk
Sessolo, Michele
Bolink, Henk J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Chloride is extensively used in the preparation of metal halide perovskites such as methylammonium lead iodide (MAPbI(3-x)Cl(x)), but its persistence and role in solution-processed materials has not yet been rationalized. Multiple-source vacuum deposition of perovskites enables a fine control over thin-film stoichiometry and allows the incorporation of chemical species irrespective of their solubility. Herein, the first example of mixed MAPbI(3-x)Cl(x) thin films prepared by three-source vacuum deposition is presented using methylammonium iodide (MAI), PbI2, and PbCl2 as precursors. The optoelectronic properties of the material are evaluated through photovoltaic and electro-/photoluminescent characterizations. Besides the very similar structural and optical properties of MAPbI(3) and MAPbI(3-x)Cl(x), an increased electroluminescence efficiency, longer photoluminescence lifetimes, as well as larger photovoltage, are observed in the presence of chloride, suggesting a reduction of nonradiative charge recombination.
Subject Keywords
Halide perovskites
,
Mixed halide perovskites
,
Solar cells
,
Vacuum deposition
URI
https://hdl.handle.net/11511/31203
Journal
ENERGY TECHNOLOGY
DOI
https://doi.org/10.1002/ente.201900784
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Preparation of porous Ca-10(PO4)(6)(OH)(2) and beta-Ca-3(PO4)(2) bioceramics
Engin, NO; Tas, AC (2000-07-01)
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca-10(PO4)(6)(OH)(2))) and eta-tricalcium phosphate (beta-TCP, Ca-3(PO4)(2)) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%-95% porosity) HA or beta-TCP ceramics. The pore sizes in HA bioceramics of this study were 200-400 mu m, whereas those of beta-TCP bioceramics were 100-300 mu m. The pore morphology and ...
PREPARATION OF BLOCK-COPOLYMERS WITH MACROAZONITRILES AS THE INITIATOR
YURUK, H; ULUPINAR, S (Wiley, 1993-12-01)
Block copolymers containing poly(ethylene oxide) or poly(propylene oxide) prepolymer segments and methyl methacrylate were prepared. A stepwise procedure was first employed to prepare macro-azocarbamates by capping hydroxy-terminated poly(ethylene oxide) or poly(propylene oxide) with 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate and subsequently reacting this intermediate with 4,4'-azobis(4-cyano-n-pentanol)**. The resulting polymeric azocarbamates were used as free-radical initiators for the poly...
Characterization and Electrical Conductivity of Poly(ethylene glycol)/Polyacrylonitrile/Multiwalled Carbon Nanotube Composites
Aqeel, Salem M.; Kucukyavuz, Zuhal (Wiley, 2011-01-05)
Polymer blends based on poly(ethylene glycol), polyacrylonitrile, and multiwalled carbon nanotubes (MWNTs) were prepared by the solvent cast technique from the dispersion of the MWNTs in the concentration range 0-3.45 wt %. The interaction of the MWNTs with the polymer blend was confirmed by a Fourier transform infrared (FTIR) spectroscopy study. The thermal properties of the polymer blend with the MWNTs were carried out by means of differential scanning calorimetry (DSC). It was evident from DSC that the p...
Synthesis, characterizations and photovoltaic applications of dithienothiophene and benzotriazole containing conjugated polymers
Cevher, Şevki Can; Çırpan, Ali; Toppare, Levent Kamil; Department of Chemistry (2013)
Fused bithiophene containing conjugated polymers are recently used in different applications; for example organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. Fused bithiophene derivatives increase the planarity, charge mobility and decrease band gap when incorporated into the polymer backbone. Connecting atom between the bithiopheneunit can be phosphorous, silicon, nitrogen and sulphur. In this thesis, dihienothiophene was coupled with benzotriazole via S...
Synthesis of various camphor-based chiral pyridine derivatives
Işık, Murat; Tanyeli, Cihangir; Department of Chemistry (2005)
Chiral aromatic nitrogen heterocycles are finding many applications in asymmetric organic synthesis, particularly as ligands in the preparation of chiral metal complexes. Since camphor-based chiral auxiliaries are known to be especially effective, a number of pyridines fused to the camphor skeleton have been reported. It is well known that nicotinic acid and its derivatives exhibiting qualitatively the biological activity of nicotinamide, which acts as an electron acceptor in many biological redox reactions...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Babaei, W. Soltanpoor, M. A. Tesa-Serrate, S. Yerci, M. Sessolo, and H. J. Bolink, “Preparation and Characterization of Mixed Halide MAPbI(3-x)Cl(x) Perovskite Thin Films by Three-Source Vacuum Deposition,”
ENERGY TECHNOLOGY
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31203.