Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Can Crude Oil Toxicity on Phytoplankton Be Predicted Based on Toxicity Data on Benzo(a)Pyrene and Naphthalene?
Date
2014-02-01
Author
Özhan, Koray
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
132
views
0
downloads
Cite This
Polycyclic aromatic hydrocarbons (PAHs), which are major components of crude oil, are responsible in large part for the toxicity of crude oil to phytoplankton. This study addressed the following question. Can reliable predictions of the aquatic toxicity of crude oil, a multi-component mixture, be described from toxicity data on individual PAH compounds? Naphthalene, the most abundant PAH compound, and benzo(a)pyrene, a highly toxic PAH compound, were selected as model compounds to quantify toxicity of crude oil on two phytoplankton species, Ditylum brightwellii and Heterocapsa triquetra, by analyzing the effects of different concentrations of these PAHs on growth rate. EC50 values suggested that the diatom D. brightwellii was more vulnerable to both toxicants than the dinoflagellate H. triquetra. However, a previous study, which investigated the impact of crude oil on the same two species, had opposite results. The differences in response from these phytoplankton species to naphthalene and benzo(a)pyrene toxicity compared to their response to crude oil suggest that they may not be solely used as surrogates to assess crude oil toxicity on phytoplankton.
Subject Keywords
Mixture toxicity
,
Phytoplankton
,
South Louisiana crude oil
,
PAHs
URI
https://hdl.handle.net/11511/31215
Journal
BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
DOI
https://doi.org/10.1007/s00128-013-1181-6
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Modeling water quality impacts of petroleum contaminated soils in a reservoir catchment
Ünlü, Kahraman (2000-05-01)
Soil contamination due to spills or leaks of crude oils and refined hydrocarbons is a common problem. Estimation of spill volume is a crucial issue in order to determine the expected contaminating life span of contaminated soils. The direct procedure to determine the amount of hydrocarbon in soil is to measure the concentration of total petroleum hydrocarbon (TPH) in soil samples. The primary objective of this study was to assess the potential effects of oil contaminated soils on the water quality of Devege...
Induction of reactive oxygen species in marine phytoplankton under crude oil exposure
Özhan, Koray; SMITH, Aaron P.; BARGU, Sibel (2015-12-01)
Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several poss...
A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater
Boyacı, Ezel; Viteri, C. Ricardo; Pawliszyn, Janusz (2016-03-04)
Fluorinated benzoic acids (FBAs) are frequently used as tracers by the oil industry to characterize petroleum reservoirs. The demand for fast, reliable, robust, and sensitive approaches to separate and quantify FBAs in produced water, both in laboratory and field conditions, has not been yet fully satisfied. In this study, for the first time, thin film solid phase microextraction (TF-SPME) is proposed as a versatile sample preparation tool for the determination of FBAs in produced water by pursing two diffe...
Investigation on indigenous bacteria for individual BTEX degradation potentials and relative pathways used
Yavaş, Alper; İçgen, Bülent; Parlaktuna, Mahmut; Department of Biotechnology (2018)
Monoaromatic hydrocarbons including benzene, toluene, ethylbenzene and xylene collectively called as BTEX are found in the composition of crude oil and gasoline as an additive and thought to be the most serious contaminants of soil and groundwater. It is expected that indigenous bacteria isolated from petroleum hydrocarbon contaminated sites probably have degradation potential for the BTEX compounds. In this study, out of 22, 19 bacterial strains were selected as potential degraders for at least one of the ...
Distinct responses of Gulf of Mexico phytoplankton communities to crude oil and the dispersant corexit(A (R)) Ec9500A under different nutrient regimes
Özhan, Koray (2014-04-01)
This study examines the potential effects of exposure to South Louisiana sweet crude oil (LSC), Corexit(A (R)) EC9500A, and dispersed oil on enclosed phytoplankton communities under different nutrient regimes. Three distinct microcosm experiments were conducted for 10 days to assess changes to the structure of natural communities from the Gulf of Mexico as quantified by temporal changes in the biomasses of different phytoplankton groups. Concentration of NO3, Si and PO4 were 0.83, 0.99 and 0.09 mu M for the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Özhan, “Can Crude Oil Toxicity on Phytoplankton Be Predicted Based on Toxicity Data on Benzo(a)Pyrene and Naphthalene?,”
BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
, pp. 225–230, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31215.