Gelatin microspheres and sponges for delivery of macromolecules

2002-01-01
Ulubayram, K
Eroglu, I
Hasırcı, Nesrin
Gelatin microspheres and gelatin sponges were prepared by coacervation and freeze drying techniques, respectively. Both systems were crosslinked with glutaraldehyde. The mean diameter of the microspheres were in the range of 40-80 mum and the mean pore size of the sponges was 130-220 mum depending on the preparation conditions. Bovine serum albumin (BSA) was added into the preparation solutions and entrapped in the microspheres and sponges. BSA addition to sponges was also achieved by addition of BSA-containing microspheres into the sponges. The release kinetics of BSA from the prepared systems were examined. Studies demonstrated that release is dependent on the amount of BSA present in the system and crosslinking densities of microspheres. It was concluded that gelatin microspheres and gelatin sponges are promising carrier matrices for macromolecules.
JOURNAL OF BIOMATERIALS APPLICATIONS

Suggestions

Cytotoxicity of 5-fluorouracil entrapped in gelatin microspheres
Muvaffak, A; Gurhan, I; Hasırcı, Nesrin (2004-05-01)
Gelatin microspheres were prepared by water/oil emulsion polymerization and by cross-linking with glutaraldehyde. For the microsphere preparation procedure, two different gelatin (5 or 10% w/v) and three different glutaraldehyde (5, 0.5 or 0.1% v/v) concentrations were used. The influence of preparation compositions on microsphere recovery, particle size and morphology, swelling and degradation, 5-fluorouracil loading and release, and cytotoxicity were investigated. The concentrations of gelatin and glutara...
Polystyrene-organoclay nanocomposites prepared by melt intercalation, in situ, and Masterbatch methods
Yılmazer, Ülkü; Ozden, G (Wiley, 2006-06-01)
In this study, polystyrene (PS)/montmorillonite nanocomposites were prepared by melt intercalation, in situ polymerization, and masterbatch methods. In the masterbatch method, as the first step, a high clay content composite of PS-organoclay (masterbatch) was prepared by in situ polymerization, and then the prepared masterbatch was diluted to desired compositions with commercial PS in a twin-screw extruder. The structure and mechanical properties of the nanocomposites were examined. X-ray diffraction (XRD) ...
Gelatin Based Scaffolds and Effect of EGF Dose on Wound Healing
Bilgic, H.; Demiriz, M.; Ozler, M.; Ide, Tayfun; Dogan, N.; Gumus, S.; Kızıltay, Aysel; Endoğan Tanır, Tuğba; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2013-04-01)
In this study, gelatin based biodegradable scaffolds (GS) containing various amounts of epidermal growth factor (EGF) were prepared and applied to full skin defects created on rats in order to investigate the EGF dose effect on healing process. Scaffolds were prepared by freeze drying technique and stabilized with either glutaraldehyde (GA) or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC). In vitro cytotoxicity of the prepared scaffolds was assessed by using human skin fibroblast secondary culture (...
Controlled release of aldicarb from carboxymethyl cellulose microspheres: in vitro and field applications
Kok, FN; Arica, MY; Gencer, O; Abak, Kazım; Hasırcı, Vasıf Nejat (1999-12-01)
Aldicarb is a carbamate pesticide that is widely used throughout the world in the protection Of crops (eg cotton, nuts, potatoes, onion, tobacco, sugar beet and sugar cane). In Turkey, especially in the Cukurova region, it is used for the control of the cotton white fly (Bemisia tabaci) which attacks cotton plants cultivated in this region. Aldicarb contamination in surface and ground water is a serious problem in several countries, partly due to its high water solubility. It is also highly toxic to mammals...
Poly(epsilon-caprolactone) composites containing gentamicin-loaded beta-tricalcium phosphate/gelatin microspheres as bone tissue supports
Sezer, Umran Aydemir; Aksoy, Eda Ayse; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2013-02-05)
In this work, novel antibacterial composites were prepared by using poly(epsilon-caprolactone) (PCL) as the main matrix material, and gentamicin-loaded microspheres composed of beta-tricalcium phosphate (beta-TCP) and gelatin. The purpose is to use this biodegradable material as a support for bone tissue. This composite system is expected to enhance bone regeneration by the presence of beta-TCP and prevent a possible infection that might occur around the defected bone region by the release of gentamicin. Th...
Citation Formats
K. Ulubayram, I. Eroglu, and N. Hasırcı, “Gelatin microspheres and sponges for delivery of macromolecules,” JOURNAL OF BIOMATERIALS APPLICATIONS, pp. 227–241, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31244.