Hide/Show Apps

Backbone resonance assignments of a promiscuous aminoglycoside antibiotic resistance enzyme; the aminoglycoside phosphotransferase(3')-IIIa

Serpersu, Engin H.
Özen, Can
Norris, Adrianne L.
Steren, Carlos
Whittemore, Neil
The aminoglycoside phosphotransferase(3')-IIIa (APH) is a promiscuous enzyme and renders a large number of structurally diverse aminoglycoside antibiotics useless against infectious bacteria. A remarkable property of this similar to 31 kDa enzyme is in its unusual dynamic behavior in solution; the apo-form of the enzyme exchanges all of its backbone amide protons within 15 h of exposure to D (2) O while aminoglycoside-bound forms retain similar to 40% of the amide protons even after > 90 h of exposure. Moreover, the number of observable peaks and their dispersion in HSQC spectra varies with each aminoglycoside, rendering the resonance assignments very challenging. Therefore, the binary APH-tobramycin complex, which shows the largest number of well-resolved peaks, was used for the backbone resonance assignments (C alpha, C, N, H, and some C beta) of this protein (BMRB-16337).