Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Application of Multivariate Adaptive Regression Splines to Sheet Metal Bending Process for Springback Compensation
Download
index.pdf
Date
2016-07-07
Author
Dilan, Rasim Askin
Balkan, Raif Tuna
Platin, Bülent Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
88
downloads
Cite This
An intelligent regression technique is applied for sheet metal bending processes to improve bending performance. This study is a part of another extensive study, automated sheet bending assistance for press brakes. Data related to material properties of sheet metal is collected in an online manner and fed to an intelligent system for determining the most accurate punch displacement without any offline iteration or calibration. The overall system aims to reduce the production time while increasing the performance of press brakes.
Subject Keywords
Air
,
Identification
URI
https://hdl.handle.net/11511/31462
DOI
https://doi.org/10.1051/matecconf/20168014002
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Performance evaluation of piezoelectric sensor/actuator on investigation of vibration characteristics and active vibration control of a smart beam
Arıdoğan, Mustafa Uğur; Şahin, Melin; Department of Aerospace Engineering (2010)
In this thesis, the performance of piezoelectric patches on investigation of vibration characteristics and active vibration control of a smart beam is presented. The smart beam is composed of eight surface-bonded piezoelectric patches symmetrically located on each side of a cantilever aluminium beam. At first, vibration characteristics of the smart beam is investigated by employment of piezoelectric patches as sensors and actuators. Smart beam is excited by either impact hammer or piezoelectric patch and th...
Dynamic characterization of bolted joints using FRF decoupling and optimization
Tol, Serife; Özgüven, Hasan Nevzat (2015-03-01)
Mechanical connections play a significant role in predicting dynamic characteristics of assembled structures. Therefore, equivalent dynamic models for joints are needed. Due to the complexity of joints, it is difficult to describe joint dynamics with analytical models. Reliable models are generally obtained using experimental measurements. In this paper an experimental identification method based on FRF decoupling and optimization algorithm is proposed for modeling joints. In the method the FRFs of two subs...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Application of computer-aided injection moulding simulation for thermoplastic materials
Onalir, B; Kaftanoglu, B; Balkan, Raif Tuna (1998-01-01)
This paper presents the computer-aided simulation of an injection moulding process for thermoplastic materials. The reasons for using computer simulation for the injection moulding process are discussed together with description of the mould-filling and cooling phenomena. The paper also traces the difficulties in transferring the geometry of the part database from a computer-aided design environment to a computer-aided analysis environment by proposing several solutions for plastic products. Details of simu...
Modelling of graded rectangular micro-plates with variable length scale parameters
Aghazadeh, Reza; Dağ, Serkan; Ciğeroğlu, Ender (2018-03-10)
This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce n...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. A. Dilan, R. T. Balkan, and B. E. Platin, “Application of Multivariate Adaptive Regression Splines to Sheet Metal Bending Process for Springback Compensation,” 2016, vol. 80, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31462.